Spaces:
Running
on
Zero
Running
on
Zero
import nodes | |
import node_helpers | |
import torch | |
import comfy.model_management | |
import comfy.model_sampling | |
import math | |
class EmptyLTXVLatentVideo: | |
def INPUT_TYPES(s): | |
return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
"length": ("INT", {"default": 97, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "generate" | |
CATEGORY = "latent/video/ltxv" | |
def generate(self, width, height, length, batch_size=1): | |
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) | |
return ({"samples": latent}, ) | |
class LTXVImgToVideo: | |
def INPUT_TYPES(s): | |
return {"required": {"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"vae": ("VAE",), | |
"image": ("IMAGE",), | |
"width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
RETURN_NAMES = ("positive", "negative", "latent") | |
CATEGORY = "conditioning/video_models" | |
FUNCTION = "generate" | |
def generate(self, positive, negative, image, vae, width, height, length, batch_size): | |
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) | |
encode_pixels = pixels[:, :, :, :3] | |
t = vae.encode(encode_pixels) | |
positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t}) | |
negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t}) | |
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) | |
latent[:, :, :t.shape[2]] = t | |
return (positive, negative, {"samples": latent}, ) | |
class LTXVConditioning: | |
def INPUT_TYPES(s): | |
return {"required": {"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING") | |
RETURN_NAMES = ("positive", "negative") | |
FUNCTION = "append" | |
CATEGORY = "conditioning/video_models" | |
def append(self, positive, negative, frame_rate): | |
positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate}) | |
negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate}) | |
return (positive, negative) | |
class ModelSamplingLTXV: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), | |
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), | |
}, | |
"optional": {"latent": ("LATENT",), } | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "advanced/model" | |
def patch(self, model, max_shift, base_shift, latent=None): | |
m = model.clone() | |
if latent is None: | |
tokens = 4096 | |
else: | |
tokens = math.prod(latent["samples"].shape[2:]) | |
x1 = 1024 | |
x2 = 4096 | |
mm = (max_shift - base_shift) / (x2 - x1) | |
b = base_shift - mm * x1 | |
shift = (tokens) * mm + b | |
sampling_base = comfy.model_sampling.ModelSamplingFlux | |
sampling_type = comfy.model_sampling.CONST | |
class ModelSamplingAdvanced(sampling_base, sampling_type): | |
pass | |
model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
model_sampling.set_parameters(shift=shift) | |
m.add_object_patch("model_sampling", model_sampling) | |
return (m, ) | |
class LTXVScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), | |
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), | |
"stretch": ("BOOLEAN", { | |
"default": True, | |
"tooltip": "Stretch the sigmas to be in the range [terminal, 1]." | |
}), | |
"terminal": ( | |
"FLOAT", | |
{ | |
"default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01, | |
"tooltip": "The terminal value of the sigmas after stretching." | |
}, | |
), | |
}, | |
"optional": {"latent": ("LATENT",), } | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None): | |
if latent is None: | |
tokens = 4096 | |
else: | |
tokens = math.prod(latent["samples"].shape[2:]) | |
sigmas = torch.linspace(1.0, 0.0, steps + 1) | |
x1 = 1024 | |
x2 = 4096 | |
mm = (max_shift - base_shift) / (x2 - x1) | |
b = base_shift - mm * x1 | |
sigma_shift = (tokens) * mm + b | |
power = 1 | |
sigmas = torch.where( | |
sigmas != 0, | |
math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power), | |
0, | |
) | |
# Stretch sigmas so that its final value matches the given terminal value. | |
if stretch: | |
non_zero_mask = sigmas != 0 | |
non_zero_sigmas = sigmas[non_zero_mask] | |
one_minus_z = 1.0 - non_zero_sigmas | |
scale_factor = one_minus_z[-1] / (1.0 - terminal) | |
stretched = 1.0 - (one_minus_z / scale_factor) | |
sigmas[non_zero_mask] = stretched | |
return (sigmas,) | |
NODE_CLASS_MAPPINGS = { | |
"EmptyLTXVLatentVideo": EmptyLTXVLatentVideo, | |
"LTXVImgToVideo": LTXVImgToVideo, | |
"ModelSamplingLTXV": ModelSamplingLTXV, | |
"LTXVConditioning": LTXVConditioning, | |
"LTXVScheduler": LTXVScheduler, | |
} | |