Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from einops import rearrange | |
from torch import Tensor | |
from comfy.ldm.modules.attention import optimized_attention | |
import comfy.model_management | |
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: | |
q, k = apply_rope(q, k, pe) | |
heads = q.shape[1] | |
x = optimized_attention(q, k, v, heads, skip_reshape=True) | |
return x | |
def rope(pos: Tensor, dim: int, theta: int) -> Tensor: | |
assert dim % 2 == 0 | |
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu(): | |
device = torch.device("cpu") | |
else: | |
device = pos.device | |
scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device) | |
omega = 1.0 / (theta**scale) | |
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega) | |
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) | |
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) | |
return out.to(dtype=torch.float32, device=pos.device) | |
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |