Spaces:
Running
on
L40S
Running
on
L40S
from typing import Any, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils import checkpoint | |
from comfy.ldm.modules.diffusionmodules.mmdit import ( | |
Mlp, | |
TimestepEmbedder, | |
PatchEmbed, | |
RMSNorm, | |
) | |
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding | |
from .poolers import AttentionPool | |
import comfy.latent_formats | |
from .models import HunYuanDiTBlock, calc_rope | |
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop | |
class HunYuanControlNet(nn.Module): | |
""" | |
HunYuanDiT: Diffusion model with a Transformer backbone. | |
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | |
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline. | |
Parameters | |
---------- | |
args: argparse.Namespace | |
The arguments parsed by argparse. | |
input_size: tuple | |
The size of the input image. | |
patch_size: int | |
The size of the patch. | |
in_channels: int | |
The number of input channels. | |
hidden_size: int | |
The hidden size of the transformer backbone. | |
depth: int | |
The number of transformer blocks. | |
num_heads: int | |
The number of attention heads. | |
mlp_ratio: float | |
The ratio of the hidden size of the MLP in the transformer block. | |
log_fn: callable | |
The logging function. | |
""" | |
def __init__( | |
self, | |
input_size: tuple = 128, | |
patch_size: int = 2, | |
in_channels: int = 4, | |
hidden_size: int = 1408, | |
depth: int = 40, | |
num_heads: int = 16, | |
mlp_ratio: float = 4.3637, | |
text_states_dim=1024, | |
text_states_dim_t5=2048, | |
text_len=77, | |
text_len_t5=256, | |
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
size_cond=False, | |
use_style_cond=False, | |
learn_sigma=True, | |
norm="layer", | |
log_fn: callable = print, | |
attn_precision=None, | |
dtype=None, | |
device=None, | |
operations=None, | |
**kwargs, | |
): | |
super().__init__() | |
self.log_fn = log_fn | |
self.depth = depth | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.text_states_dim = text_states_dim | |
self.text_states_dim_t5 = text_states_dim_t5 | |
self.text_len = text_len | |
self.text_len_t5 = text_len_t5 | |
self.size_cond = size_cond | |
self.use_style_cond = use_style_cond | |
self.norm = norm | |
self.dtype = dtype | |
self.latent_format = comfy.latent_formats.SDXL | |
self.mlp_t5 = nn.Sequential( | |
nn.Linear( | |
self.text_states_dim_t5, | |
self.text_states_dim_t5 * 4, | |
bias=True, | |
dtype=dtype, | |
device=device, | |
), | |
nn.SiLU(), | |
nn.Linear( | |
self.text_states_dim_t5 * 4, | |
self.text_states_dim, | |
bias=True, | |
dtype=dtype, | |
device=device, | |
), | |
) | |
# learnable replace | |
self.text_embedding_padding = nn.Parameter( | |
torch.randn( | |
self.text_len + self.text_len_t5, | |
self.text_states_dim, | |
dtype=dtype, | |
device=device, | |
) | |
) | |
# Attention pooling | |
pooler_out_dim = 1024 | |
self.pooler = AttentionPool( | |
self.text_len_t5, | |
self.text_states_dim_t5, | |
num_heads=8, | |
output_dim=pooler_out_dim, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
# Dimension of the extra input vectors | |
self.extra_in_dim = pooler_out_dim | |
if self.size_cond: | |
# Image size and crop size conditions | |
self.extra_in_dim += 6 * 256 | |
if self.use_style_cond: | |
# Here we use a default learned embedder layer for future extension. | |
self.style_embedder = nn.Embedding( | |
1, hidden_size, dtype=dtype, device=device | |
) | |
self.extra_in_dim += hidden_size | |
# Text embedding for `add` | |
self.x_embedder = PatchEmbed( | |
input_size, | |
patch_size, | |
in_channels, | |
hidden_size, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
self.t_embedder = TimestepEmbedder( | |
hidden_size, dtype=dtype, device=device, operations=operations | |
) | |
self.extra_embedder = nn.Sequential( | |
operations.Linear( | |
self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device | |
), | |
nn.SiLU(), | |
operations.Linear( | |
hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device | |
), | |
) | |
# Image embedding | |
num_patches = self.x_embedder.num_patches | |
# HUnYuanDiT Blocks | |
self.blocks = nn.ModuleList( | |
[ | |
HunYuanDiTBlock( | |
hidden_size=hidden_size, | |
c_emb_size=hidden_size, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
text_states_dim=self.text_states_dim, | |
qk_norm=qk_norm, | |
norm_type=self.norm, | |
skip=False, | |
attn_precision=attn_precision, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
for _ in range(19) | |
] | |
) | |
# Input zero linear for the first block | |
self.before_proj = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device) | |
# Output zero linear for the every block | |
self.after_proj_list = nn.ModuleList( | |
[ | |
operations.Linear( | |
self.hidden_size, self.hidden_size, dtype=dtype, device=device | |
) | |
for _ in range(len(self.blocks)) | |
] | |
) | |
def forward( | |
self, | |
x, | |
hint, | |
timesteps, | |
context,#encoder_hidden_states=None, | |
text_embedding_mask=None, | |
encoder_hidden_states_t5=None, | |
text_embedding_mask_t5=None, | |
image_meta_size=None, | |
style=None, | |
return_dict=False, | |
**kwarg, | |
): | |
""" | |
Forward pass of the encoder. | |
Parameters | |
---------- | |
x: torch.Tensor | |
(B, D, H, W) | |
t: torch.Tensor | |
(B) | |
encoder_hidden_states: torch.Tensor | |
CLIP text embedding, (B, L_clip, D) | |
text_embedding_mask: torch.Tensor | |
CLIP text embedding mask, (B, L_clip) | |
encoder_hidden_states_t5: torch.Tensor | |
T5 text embedding, (B, L_t5, D) | |
text_embedding_mask_t5: torch.Tensor | |
T5 text embedding mask, (B, L_t5) | |
image_meta_size: torch.Tensor | |
(B, 6) | |
style: torch.Tensor | |
(B) | |
cos_cis_img: torch.Tensor | |
sin_cis_img: torch.Tensor | |
return_dict: bool | |
Whether to return a dictionary. | |
""" | |
condition = hint | |
if condition.shape[0] == 1: | |
condition = torch.repeat_interleave(condition, x.shape[0], dim=0) | |
text_states = context # 2,77,1024 | |
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048 | |
text_states_mask = text_embedding_mask.bool() # 2,77 | |
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256 | |
b_t5, l_t5, c_t5 = text_states_t5.shape | |
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1) | |
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states) | |
text_states[:, -self.text_len :] = torch.where( | |
text_states_mask[:, -self.text_len :].unsqueeze(2), | |
text_states[:, -self.text_len :], | |
padding[: self.text_len], | |
) | |
text_states_t5[:, -self.text_len_t5 :] = torch.where( | |
text_states_t5_mask[:, -self.text_len_t5 :].unsqueeze(2), | |
text_states_t5[:, -self.text_len_t5 :], | |
padding[self.text_len :], | |
) | |
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024 | |
# _, _, oh, ow = x.shape | |
# th, tw = oh // self.patch_size, ow // self.patch_size | |
# Get image RoPE embedding according to `reso`lution. | |
freqs_cis_img = calc_rope( | |
x, self.patch_size, self.hidden_size // self.num_heads | |
) # (cos_cis_img, sin_cis_img) | |
# ========================= Build time and image embedding ========================= | |
t = self.t_embedder(timesteps, dtype=self.dtype) | |
x = self.x_embedder(x) | |
# ========================= Concatenate all extra vectors ========================= | |
# Build text tokens with pooling | |
extra_vec = self.pooler(encoder_hidden_states_t5) | |
# Build image meta size tokens if applicable | |
# if image_meta_size is not None: | |
# image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256] | |
# if image_meta_size.dtype != self.dtype: | |
# image_meta_size = image_meta_size.half() | |
# image_meta_size = image_meta_size.view(-1, 6 * 256) | |
# extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256] | |
# Build style tokens | |
if style is not None: | |
style_embedding = self.style_embedder(style) | |
extra_vec = torch.cat([extra_vec, style_embedding], dim=1) | |
# Concatenate all extra vectors | |
c = t + self.extra_embedder(extra_vec) # [B, D] | |
# ========================= Deal with Condition ========================= | |
condition = self.x_embedder(condition) | |
# ========================= Forward pass through HunYuanDiT blocks ========================= | |
controls = [] | |
x = x + self.before_proj(condition) # add condition | |
for layer, block in enumerate(self.blocks): | |
x = block(x, c, text_states, freqs_cis_img) | |
controls.append(self.after_proj_list[layer](x)) # zero linear for output | |
return {"output": controls} | |