Spaces:
Running
on
Zero
Running
on
Zero
#original code from https://github.com/genmoai/models under apache 2.0 license | |
#adapted to ComfyUI | |
import collections.abc | |
import math | |
from itertools import repeat | |
from typing import Callable, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
import comfy.ldm.common_dit | |
# From PyTorch internals | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): | |
return tuple(x) | |
return tuple(repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
class TimestepEmbedder(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
frequency_embedding_size: int = 256, | |
*, | |
bias: bool = True, | |
timestep_scale: Optional[float] = None, | |
dtype=None, | |
device=None, | |
operations=None, | |
): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
operations.Linear(frequency_embedding_size, hidden_size, bias=bias, dtype=dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(hidden_size, hidden_size, bias=bias, dtype=dtype, device=device), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.timestep_scale = timestep_scale | |
def timestep_embedding(t, dim, max_period=10000): | |
half = dim // 2 | |
freqs = torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) | |
freqs.mul_(-math.log(max_period) / half).exp_() | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat( | |
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
) | |
return embedding | |
def forward(self, t, out_dtype): | |
if self.timestep_scale is not None: | |
t = t * self.timestep_scale | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=out_dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_size: int, | |
multiple_of: int, | |
ffn_dim_multiplier: Optional[float], | |
device: Optional[torch.device] = None, | |
dtype=None, | |
operations=None, | |
): | |
super().__init__() | |
# keep parameter count and computation constant compared to standard FFN | |
hidden_size = int(2 * hidden_size / 3) | |
# custom dim factor multiplier | |
if ffn_dim_multiplier is not None: | |
hidden_size = int(ffn_dim_multiplier * hidden_size) | |
hidden_size = multiple_of * ((hidden_size + multiple_of - 1) // multiple_of) | |
self.hidden_dim = hidden_size | |
self.w1 = operations.Linear(in_features, 2 * hidden_size, bias=False, device=device, dtype=dtype) | |
self.w2 = operations.Linear(hidden_size, in_features, bias=False, device=device, dtype=dtype) | |
def forward(self, x): | |
x, gate = self.w1(x).chunk(2, dim=-1) | |
x = self.w2(F.silu(x) * gate) | |
return x | |
class PatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
norm_layer: Optional[Callable] = None, | |
flatten: bool = True, | |
bias: bool = True, | |
dynamic_img_pad: bool = False, | |
dtype=None, | |
device=None, | |
operations=None, | |
): | |
super().__init__() | |
self.patch_size = to_2tuple(patch_size) | |
self.flatten = flatten | |
self.dynamic_img_pad = dynamic_img_pad | |
self.proj = operations.Conv2d( | |
in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=bias, | |
device=device, | |
dtype=dtype, | |
) | |
assert norm_layer is None | |
self.norm = ( | |
norm_layer(embed_dim, device=device) if norm_layer else nn.Identity() | |
) | |
def forward(self, x): | |
B, _C, T, H, W = x.shape | |
if not self.dynamic_img_pad: | |
assert H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." | |
assert W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." | |
else: | |
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] | |
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] | |
x = F.pad(x, (0, pad_w, 0, pad_h)) | |
x = rearrange(x, "B C T H W -> (B T) C H W", B=B, T=T) | |
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode='circular') | |
x = self.proj(x) | |
# Flatten temporal and spatial dimensions. | |
if not self.flatten: | |
raise NotImplementedError("Must flatten output.") | |
x = rearrange(x, "(B T) C H W -> B (T H W) C", B=B, T=T) | |
x = self.norm(x) | |
return x | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None): | |
super().__init__() | |
self.eps = eps | |
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype)) | |
self.register_parameter("bias", None) | |
def forward(self, x): | |
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps) | |