Spaces:
Running
on
L40S
Running
on
L40S
from comfy import sd1_clip | |
import os | |
class LongClipTokenizer_(sd1_clip.SDTokenizer): | |
def __init__(self, embedding_directory=None, tokenizer_data={}): | |
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) | |
class LongClipModel_(sd1_clip.SDClipModel): | |
def __init__(self, *args, **kwargs): | |
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json") | |
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs) | |
class LongClipTokenizer(sd1_clip.SD1Tokenizer): | |
def __init__(self, embedding_directory=None, tokenizer_data={}): | |
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_) | |
class LongClipModel(sd1_clip.SD1ClipModel): | |
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs): | |
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs) | |
def model_options_long_clip(sd, tokenizer_data, model_options): | |
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None) | |
if w is None: | |
w = sd.get("text_model.embeddings.position_embedding.weight", None) | |
if w is not None and w.shape[0] == 248: | |
tokenizer_data = tokenizer_data.copy() | |
model_options = model_options.copy() | |
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_ | |
model_options["clip_l_class"] = LongClipModel_ | |
return tokenizer_data, model_options | |