Spaces:
Running
on
Zero
Running
on
Zero
#---------------------------------------------------------------------------------------------------------------------# | |
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes | |
# for ComfyUI https://github.com/comfyanonymous/ComfyUI | |
#---------------------------------------------------------------------------------------------------------------------# | |
import os | |
import sys | |
import comfy.sd | |
import comfy.utils | |
import folder_paths | |
import hashlib | |
from random import random, uniform | |
from ..categories import icons | |
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy")) | |
#---------------------------------------------------------------------------------------------------------------------# | |
# LoRA Nodes | |
#---------------------------------------------------------------------------------------------------------------------# | |
# This is a load lora node with an added switch to turn on or off. On will add the lora and off will skip the node. | |
class CR_LoraLoader: | |
def __init__(self): | |
self.loaded_lora = None | |
def INPUT_TYPES(s): | |
file_list = folder_paths.get_filename_list("loras") | |
file_list.insert(0, "None") | |
return {"required": { "model": ("MODEL",), | |
"clip": ("CLIP", ), | |
"switch": (["On","Off"],), | |
"lora_name": (file_list, ), | |
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL", "CLIP", "STRING", ) | |
RETURN_NAMES = ("MODEL", "CLIP", "show_help", ) | |
FUNCTION = "load_lora" | |
CATEGORY = icons.get("Comfyroll/LoRA") | |
def load_lora(self, model, clip, switch, lora_name, strength_model, strength_clip): | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-load-lora" | |
if strength_model == 0 and strength_clip == 0: | |
return (model, clip, show_help, ) | |
if switch == "Off" or lora_name == "None": | |
return (model, clip, show_help, ) | |
lora_path = folder_paths.get_full_path("loras", lora_name) | |
lora = None | |
if self.loaded_lora is not None: | |
if self.loaded_lora[0] == lora_path: | |
lora = self.loaded_lora[1] | |
else: | |
del self.loaded_lora | |
if lora is None: | |
lora = comfy.utils.load_torch_file(lora_path, safe_load=True) | |
self.loaded_lora = (lora_path, lora) | |
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip) | |
return (model_lora, clip_lora, show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
# Based on Efficiency Nodes | |
# This is a lora stack where a single node has 3 different loras each with their own switch | |
class CR_LoRAStack: | |
def INPUT_TYPES(cls): | |
loras = ["None"] + folder_paths.get_filename_list("loras") | |
return {"required": { | |
"switch_1": (["Off","On"],), | |
"lora_name_1": (loras,), | |
"model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"switch_2": (["Off","On"],), | |
"lora_name_2": (loras,), | |
"model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"switch_3": (["Off","On"],), | |
"lora_name_3": (loras,), | |
"model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
}, | |
"optional": {"lora_stack": ("LORA_STACK",) | |
}, | |
} | |
RETURN_TYPES = ("LORA_STACK", "STRING", ) | |
RETURN_NAMES = ("LORA_STACK", "show_help", ) | |
FUNCTION = "lora_stacker" | |
CATEGORY = icons.get("Comfyroll/LoRA") | |
def lora_stacker(self, lora_name_1, model_weight_1, clip_weight_1, switch_1, lora_name_2, model_weight_2, clip_weight_2, switch_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, lora_stack=None): | |
# Initialise the list | |
lora_list=list() | |
if lora_stack is not None: | |
lora_list.extend([l for l in lora_stack if l[0] != "None"]) | |
if lora_name_1 != "None" and switch_1 == "On": | |
lora_list.extend([(lora_name_1, model_weight_1, clip_weight_1)]), | |
if lora_name_2 != "None" and switch_2 == "On": | |
lora_list.extend([(lora_name_2, model_weight_2, clip_weight_2)]), | |
if lora_name_3 != "None" and switch_3 == "On": | |
lora_list.extend([(lora_name_3, model_weight_3, clip_weight_3)]), | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-lora-stack" | |
return (lora_list, show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
# This applies the lora stack. | |
class CR_ApplyLoRAStack: | |
def INPUT_TYPES(cls): | |
return {"required": {"model": ("MODEL",), | |
"clip": ("CLIP", ), | |
"lora_stack": ("LORA_STACK", ), | |
} | |
} | |
RETURN_TYPES = ("MODEL", "CLIP", "STRING", ) | |
RETURN_NAMES = ("MODEL", "CLIP", "show_help", ) | |
FUNCTION = "apply_lora_stack" | |
CATEGORY = icons.get("Comfyroll/LoRA") | |
def apply_lora_stack(self, model, clip, lora_stack=None,): | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-apply-lora-stack" | |
# Initialise the list | |
lora_params = list() | |
# Extend lora_params with lora-stack items | |
if lora_stack: | |
lora_params.extend(lora_stack) | |
else: | |
return (model, clip, show_help,) | |
# Initialise the model and clip | |
model_lora = model | |
clip_lora = clip | |
# Loop through the list | |
for tup in lora_params: | |
lora_name, strength_model, strength_clip = tup | |
lora_path = folder_paths.get_full_path("loras", lora_name) | |
lora = comfy.utils.load_torch_file(lora_path, safe_load=True) | |
model_lora, clip_lora = comfy.sd.load_lora_for_models(model_lora, clip_lora, lora, strength_model, strength_clip) | |
return (model_lora, clip_lora, show_help,) | |
#---------------------------------------------------------------------------------------------------------------------# | |
# This is adds to a LoRA stack chain, which produces a LoRA instance with a randomized weight within a range. | |
# Stride sets the number of iterations before weight is re-randomized. | |
class CR_RandomWeightLoRA: | |
def INPUT_TYPES(cls): | |
loras = ["None"] + folder_paths.get_filename_list("loras") | |
return {"required": { | |
"stride": (("INT", {"default": 1, "min": 1, "max": 1000})), | |
"force_randomize_after_stride": (["Off","On"],), | |
"lora_name": (loras,), | |
"switch": (["Off","On"],), | |
"weight_min": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"weight_max": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"clip_weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
}, | |
"optional": {"lora_stack": ("LORA_STACK",) | |
}, | |
} | |
RETURN_TYPES = ("LORA_STACK",) | |
FUNCTION = "random_weight_lora" | |
CATEGORY = icons.get("Comfyroll/LoRA") | |
LastWeightMap = {} | |
StridesMap = {} | |
LastHashMap = {} | |
def getIdHash(lora_name: str, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) -> int: | |
fl_str = f"{lora_name}_{force_randomize_after_stride}_{stride}_{weight_min:.2f}_{weight_max:.2f}_{clip_weight:.2f}" | |
return hashlib.sha256(fl_str.encode('utf-8')).hexdigest() | |
def IS_CHANGED(cls, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None): | |
id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) | |
if switch == "Off": | |
return id_hash + "_Off" | |
if lora_name == "None": | |
return id_hash | |
if id_hash not in CR_RandomWeightLoRA.StridesMap: | |
CR_RandomWeightLoRA.StridesMap[id_hash] = 0 | |
CR_RandomWeightLoRA.StridesMap[id_hash] += 1 | |
if stride > 1 and CR_RandomWeightLoRA.StridesMap[id_hash] < stride and id_hash in CR_RandomWeightLoRA.LastHashMap: | |
return CR_RandomWeightLoRA.LastHashMap[id_hash] | |
else: | |
CR_RandomWeightLoRA.StridesMap[id_hash] = 0 | |
last_weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, None) | |
weight = uniform(weight_min, weight_max) | |
if last_weight is not None: | |
while weight == last_weight: | |
weight = uniform(weight_min, weight_max) | |
CR_RandomWeightLoRA.LastWeightMap[id_hash] = weight | |
hash_str = f"{id_hash}_{weight:.3f}" | |
CR_RandomWeightLoRA.LastHashMap[id_hash] = hash_str | |
return hash_str | |
def random_weight_lora(self, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None): | |
id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) | |
# Initialise the list | |
lora_list=list() | |
if lora_stack is not None: | |
lora_list.extend([l for l in lora_stack if l[0] != "None"]) | |
weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, 0.0) | |
if lora_name != "None" and switch == "On": | |
lora_list.extend([(lora_name, weight, clip_weight)]), | |
return (lora_list,) | |
#---------------------------------------------------------------------------------------------------------------------# | |
# This is a lora stack where a single node has 3 different loras which can be applied randomly. Exclusive mode causes only one lora to be applied. | |
# If exclusive mode is on, each LoRA's chance of being applied is evaluated, and the lora with the highest chance is applied | |
# Stride sets the minimum number of cycles before a re-randomization is performed. | |
class CR_RandomLoRAStack: | |
def INPUT_TYPES(cls): | |
loras = ["None"] + folder_paths.get_filename_list("loras") | |
return {"required": { | |
"exclusive_mode": (["Off","On"],), | |
"stride": (("INT", {"default": 1, "min": 1, "max": 1000})), | |
"force_randomize_after_stride": (["Off","On"],), | |
"lora_name_1": (loras,), | |
"switch_1": (["Off","On"],), | |
"chance_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"lora_name_2": (loras,), | |
"switch_2": (["Off","On"],), | |
"chance_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"lora_name_3": (loras,), | |
"switch_3": (["Off","On"],), | |
"chance_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
"clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
}, | |
"optional": {"lora_stack": ("LORA_STACK",) | |
}, | |
} | |
RETURN_TYPES = ("LORA_STACK",) | |
FUNCTION = "random_lora_stacker" | |
CATEGORY = icons.get("Comfyroll/LoRA") | |
UsedLorasMap = {} | |
StridesMap = {} | |
LastHashMap = {} | |
def getIdHash(lora_name_1: str, lora_name_2: str, lora_name_3: str) -> int: | |
id_set = set([lora_name_1, lora_name_2, lora_name_3]) | |
id_hash = hash(frozenset(id_set)) | |
return id_hash | |
def deduplicateLoraNames(lora_name_1: str, lora_name_2: str, lora_name_3: str): | |
is_same_1 = False | |
is_same_2 = False | |
is_same_3 = False | |
if lora_name_1 == lora_name_2: | |
is_same_1 = True | |
is_same_2 = True | |
if lora_name_1 == lora_name_3: | |
is_same_1 = True | |
is_same_3 = True | |
if lora_name_2 == lora_name_3: | |
is_same_2 = True | |
is_same_3 = True | |
if is_same_1: | |
lora_name_1 = lora_name_1 + "CR_RandomLoRAStack_1" | |
if is_same_2: | |
lora_name_2 = lora_name_2 + "CR_RandomLoRAStack_2" | |
if is_same_3: | |
lora_name_3 = lora_name_3 + "CR_RandomLoRAStack_3" | |
return lora_name_1, lora_name_2, lora_name_3 | |
def cleanLoraName(lora_name) -> str: | |
if "CR_RandomLoRAStack_1" in lora_name: | |
lora_name = lora_name.replace("CR_RandomLoRAStack_1", "") | |
elif "CR_RandomLoRAStack_2" in lora_name: | |
lora_name = lora_name.replace("CR_RandomLoRAStack_2", "") | |
elif "CR_RandomLoRAStack_3" in lora_name: | |
lora_name = lora_name.replace("CR_RandomLoRAStack_3", "") | |
return lora_name | |
def IS_CHANGED(cls, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2, | |
model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None): | |
lora_set = set() | |
lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3) | |
id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3) | |
if id_hash not in CR_RandomLoRAStack.StridesMap: | |
CR_RandomLoRAStack.StridesMap[id_hash] = 0 | |
CR_RandomLoRAStack.StridesMap[id_hash] += 1 | |
if stride > 1 and CR_RandomLoRAStack.StridesMap[id_hash] < stride and id_hash in CR_RandomLoRAStack.LastHashMap: | |
return CR_RandomLoRAStack.LastHashMap[id_hash] | |
else: | |
CR_RandomLoRAStack.StridesMap[id_hash] = 0 | |
total_on = 0 | |
if lora_name_1 != "None" and switch_1 == "On" and chance_1 > 0.0: total_on += 1 | |
if lora_name_2 != "None" and switch_2 == "On" and chance_2 > 0.0: total_on += 1 | |
if lora_name_3 != "None" and switch_3 == "On" and chance_3 > 0.0: total_on += 1 | |
def perform_randomization() -> set: | |
_lora_set = set() | |
rand_1 = random() | |
rand_2 = random() | |
rand_3 = random() | |
apply_1 = True if (rand_1 <= chance_1 and switch_1 == "On") else False | |
apply_2 = True if (rand_2 <= chance_2 and switch_2 == "On") else False | |
apply_3 = True if (rand_3 <= chance_3 and switch_3 == "On") else False | |
num_to_apply = sum([apply_1, apply_2, apply_3]) | |
if exclusive_mode == "On" and num_to_apply > 1: | |
rand_dict = {} | |
if apply_1: rand_dict[1] = rand_1 | |
if apply_2: rand_dict[2] = rand_2 | |
if apply_3: rand_dict[3] = rand_3 | |
sorted_rands = sorted(rand_dict.keys(), key=lambda k: rand_dict[k]) | |
if sorted_rands[0] == 1: | |
apply_2 = False | |
apply_3 = False | |
elif sorted_rands[0] == 2: | |
apply_1 = False | |
apply_3 = False | |
elif sorted_rands[0] == 3: | |
apply_1 = False | |
apply_2 = False | |
if lora_name_1 != "None" and switch_1 == "On" and apply_1: | |
_lora_set.add(lora_name_1) | |
if lora_name_2 != "None" and switch_2 == "On" and apply_2: | |
_lora_set.add(lora_name_2) | |
if lora_name_3 != "None" and switch_3 == "On" and apply_3: | |
_lora_set.add(lora_name_3) | |
return _lora_set | |
last_lora_set = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set()) | |
lora_set = perform_randomization() | |
if force_randomize_after_stride == "On" and len(last_lora_set) > 0 and total_on > 1: | |
while lora_set == last_lora_set: | |
lora_set = perform_randomization() | |
CR_RandomLoRAStack.UsedLorasMap[id_hash] = lora_set | |
hash_str = str(hash(frozenset(lora_set))) | |
CR_RandomLoRAStack.LastHashMap[id_hash] = hash_str | |
return hash_str | |
def random_lora_stacker(self, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2, | |
model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None): | |
# Initialise the list | |
lora_list=list() | |
if lora_stack is not None: | |
lora_list.extend([l for l in lora_stack if l[0] != "None"]) | |
lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3) | |
id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3) | |
used_loras = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set()) | |
if lora_name_1 != "None" and switch_1 == "On" and lora_name_1 in used_loras: | |
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_1), model_weight_1, clip_weight_1)]), | |
if lora_name_2 != "None" and switch_2 == "On" and lora_name_2 in used_loras: | |
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_2), model_weight_2, clip_weight_2)]), | |
if lora_name_3 != "None" and switch_3 == "On" and lora_name_3 in used_loras: | |
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_3), model_weight_3, clip_weight_3)]), | |
return (lora_list,) | |
#---------------------------------------------------------------------------------------------------------------------# | |
# MAPPINGS | |
#---------------------------------------------------------------------------------------------------------------------# | |
# For reference only, actual mappings are in __init__.py | |
''' | |
NODE_CLASS_MAPPINGS = { | |
"CR Load LoRA": CR_LoraLoader, | |
"CR LoRA Stack":CR_LoRAStack, | |
"CR Apply LoRA Stack":CR_ApplyLoRAStack, | |
"CR Random LoRA Stack":CR_RandomLoRAStack, | |
"CR Random Weight LoRA":CR_RandomWeightLoRA, | |
} | |
''' | |