Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -128,7 +128,6 @@ zoe.to(device)
|
|
128 |
pipe.to(device)
|
129 |
|
130 |
last_lora = ""
|
131 |
-
last_merged = False
|
132 |
last_fused = False
|
133 |
js = '''
|
134 |
var button = document.getElementById('button');
|
@@ -205,8 +204,20 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
205 |
del weights_sd
|
206 |
del lora_model
|
207 |
@spaces.GPU
|
208 |
-
def generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale,
|
209 |
-
global last_fused
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
if last_lora != repo_name:
|
211 |
if(last_fused):
|
212 |
st = time.time()
|
@@ -259,10 +270,10 @@ def generate_image(prompt, negative, face_emb, face_image, image_strength, image
|
|
259 |
guidance_scale = guidance_scale,
|
260 |
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
261 |
).images[0]
|
|
|
262 |
return image
|
263 |
|
264 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
265 |
-
global last_lora, last_merged, last_fused, pipe
|
266 |
selected_state_index = selected_state.index
|
267 |
face_image = center_crop_image_as_square(face_image)
|
268 |
st = time.time()
|
@@ -276,6 +287,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
276 |
et = time.time()
|
277 |
elapsed_time = et - st
|
278 |
print('Calculating face embeds took: ', elapsed_time, 'seconds')
|
|
|
279 |
for lora_list in lora_defaults:
|
280 |
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
281 |
prompt_full = lora_list.get("prompt", None)
|
@@ -286,15 +298,6 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
286 |
print("Prompt:", prompt)
|
287 |
if(prompt == ""):
|
288 |
prompt = "a person"
|
289 |
-
#prepare face zoe
|
290 |
-
st = time.time()
|
291 |
-
with torch.no_grad():
|
292 |
-
image_zoe = zoe(face_image)
|
293 |
-
et = time.time()
|
294 |
-
elapsed_time = et - st
|
295 |
-
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
296 |
-
width, height = face_kps.size
|
297 |
-
images = [face_kps, image_zoe.resize((height, width))]
|
298 |
|
299 |
#if(selected_state.index < 0):
|
300 |
# if(selected_state.index == -9999):
|
@@ -315,12 +318,8 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
315 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
316 |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
317 |
cross_attention_kwargs = None
|
318 |
-
print("Last LoRA: ", last_lora)
|
319 |
-
print("Current LoRA: ", repo_name)
|
320 |
-
print("Last fused: ", last_fused)
|
321 |
|
322 |
-
image = generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale,
|
323 |
-
last_lora = repo_name
|
324 |
return image, gr.update(visible=True)
|
325 |
|
326 |
def shuffle_gallery(sdxl_loras):
|
|
|
128 |
pipe.to(device)
|
129 |
|
130 |
last_lora = ""
|
|
|
131 |
last_fused = False
|
132 |
js = '''
|
133 |
var button = document.getElementById('button');
|
|
|
204 |
del weights_sd
|
205 |
del lora_model
|
206 |
@spaces.GPU
|
207 |
+
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, images, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index):
|
208 |
+
global last_fused, last_lora
|
209 |
+
print("Last LoRA: ", last_lora)
|
210 |
+
print("Current LoRA: ", repo_name)
|
211 |
+
print("Last fused: ", last_fused)
|
212 |
+
#prepare face zoe
|
213 |
+
st = time.time()
|
214 |
+
with torch.no_grad():
|
215 |
+
image_zoe = zoe(face_image)
|
216 |
+
width, height = face_kps.size
|
217 |
+
images = [face_kps, image_zoe.resize((height, width))]
|
218 |
+
et = time.time()
|
219 |
+
elapsed_time = et - st
|
220 |
+
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
221 |
if last_lora != repo_name:
|
222 |
if(last_fused):
|
223 |
st = time.time()
|
|
|
270 |
guidance_scale = guidance_scale,
|
271 |
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
272 |
).images[0]
|
273 |
+
last_lora = repo_name
|
274 |
return image
|
275 |
|
276 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
|
|
277 |
selected_state_index = selected_state.index
|
278 |
face_image = center_crop_image_as_square(face_image)
|
279 |
st = time.time()
|
|
|
287 |
et = time.time()
|
288 |
elapsed_time = et - st
|
289 |
print('Calculating face embeds took: ', elapsed_time, 'seconds')
|
290 |
+
|
291 |
for lora_list in lora_defaults:
|
292 |
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
293 |
prompt_full = lora_list.get("prompt", None)
|
|
|
298 |
print("Prompt:", prompt)
|
299 |
if(prompt == ""):
|
300 |
prompt = "a person"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
#if(selected_state.index < 0):
|
303 |
# if(selected_state.index == -9999):
|
|
|
318 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
319 |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
320 |
cross_attention_kwargs = None
|
|
|
|
|
|
|
321 |
|
322 |
+
image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, images, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index)
|
|
|
323 |
return image, gr.update(visible=True)
|
324 |
|
325 |
def shuffle_gallery(sdxl_loras):
|