Spaces:
Runtime error
Runtime error
Commit
•
be31516
1
Parent(s):
e93e44b
Adjust parameters to work with CLIP Guidance
Browse files
app.py
CHANGED
@@ -74,6 +74,8 @@ def run_all(prompt, steps, n_images, weight, clip_guided):
|
|
74 |
target_embed = clip_model.encode_text(clip.tokenize(prompt).to('cuda')).float()#.cuda()
|
75 |
|
76 |
if(clip_guided):
|
|
|
|
|
77 |
prompts = [prompt]
|
78 |
target_embeds, weights = [], []
|
79 |
def parse_prompt(prompt):
|
@@ -126,7 +128,7 @@ def run_all(prompt, steps, n_images, weight, clip_guided):
|
|
126 |
clip_in = normalize(make_cutouts((pred + 1) / 2))
|
127 |
image_embeds = clip_model.encode_image(clip_in).view([16, x.shape[0], -1])
|
128 |
losses = spherical_dist_loss(image_embeds, clip_embed[None])
|
129 |
-
loss = losses.mean(0).sum() *
|
130 |
grad = -torch.autograd.grad(loss, x)[0]
|
131 |
return grad
|
132 |
|
@@ -159,15 +161,15 @@ gallery = gr.Gallery(css={"height": "256px","width":"256px"})
|
|
159 |
iface = gr.Interface(
|
160 |
fn=run_all,
|
161 |
inputs=[
|
162 |
-
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="
|
163 |
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=40,maximum=80,minimum=1,step=1),
|
164 |
gr.inputs.Slider(label="Number of images in parallel", default=2, maximum=4, minimum=1, step=1),
|
165 |
gr.inputs.Slider(label="Weight - how closely the image should resemble the prompt", default=5, maximum=15, minimum=0, step=1),
|
166 |
-
gr.inputs.Checkbox(label="CLIP Guided - improves coherence with
|
167 |
],
|
168 |
outputs=gallery,
|
169 |
-
title="Generate images from text with V-Diffusion
|
170 |
-
description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/crowsonkb/v-diffusion-pytorch' target='_blank'>V-Diffusion</a> is diffusion text-to-image model created by <a href='https://twitter.com/RiversHaveWings' target='_blank'>Katherine Crowson</a> and <a href='https://twitter.com/jd_pressman'>JDP</a>, trained on the <a href='https://github.com/google-research-datasets/conceptual-12m'>CC12M dataset</a>.
|
171 |
#article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
|
172 |
)
|
173 |
iface.launch(enable_queue=True)
|
|
|
74 |
target_embed = clip_model.encode_text(clip.tokenize(prompt).to('cuda')).float()#.cuda()
|
75 |
|
76 |
if(clip_guided):
|
77 |
+
steps = steps*5
|
78 |
+
clip_guidance_scale = weight*100
|
79 |
prompts = [prompt]
|
80 |
target_embeds, weights = [], []
|
81 |
def parse_prompt(prompt):
|
|
|
128 |
clip_in = normalize(make_cutouts((pred + 1) / 2))
|
129 |
image_embeds = clip_model.encode_image(clip_in).view([16, x.shape[0], -1])
|
130 |
losses = spherical_dist_loss(image_embeds, clip_embed[None])
|
131 |
+
loss = losses.mean(0).sum() * clip_guidance_scale
|
132 |
grad = -torch.autograd.grad(loss, x)[0]
|
133 |
return grad
|
134 |
|
|
|
161 |
iface = gr.Interface(
|
162 |
fn=run_all,
|
163 |
inputs=[
|
164 |
+
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="an alien landscape in the forest"),
|
165 |
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=40,maximum=80,minimum=1,step=1),
|
166 |
gr.inputs.Slider(label="Number of images in parallel", default=2, maximum=4, minimum=1, step=1),
|
167 |
gr.inputs.Slider(label="Weight - how closely the image should resemble the prompt", default=5, maximum=15, minimum=0, step=1),
|
168 |
+
gr.inputs.Checkbox(label="CLIP Guided - improves coherence with complex prompts, makes it slower"),
|
169 |
],
|
170 |
outputs=gallery,
|
171 |
+
title="Generate images from text with V-Diffusion",
|
172 |
+
description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/crowsonkb/v-diffusion-pytorch' target='_blank'>V-Diffusion</a> is diffusion text-to-image model created by <a href='https://twitter.com/RiversHaveWings' target='_blank'>Katherine Crowson</a> and <a href='https://twitter.com/jd_pressman'>JDP</a>, trained on the <a href='https://github.com/google-research-datasets/conceptual-12m'>CC12M dataset</a>. The UI to the model was assembled by <a style='color: rgb(99, 102, 241);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a>, keep up with the <a style='color: rgb(99, 102, 241);' href='https://multimodal.art/news' target='_blank'>latest multimodal ai art news here</a> and consider <a style='color: rgb(99, 102, 241);' href='https://www.patreon.com/multimodalart' target='_blank'>supporting us on Patreon</a></div>",
|
173 |
#article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
|
174 |
)
|
175 |
iface.launch(enable_queue=True)
|