Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import numpy as np | |
| import math | |
| import os | |
| import pickle | |
| import requests | |
| import textwrap | |
| import subprocess | |
| import shutil | |
| import time | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| # --- 1. Automated Environment and Data Setup --- | |
| def setup_environment(): | |
| """ | |
| Checks for and sets up the necessary data and code. | |
| - Clones nanoGPT if not present. | |
| - Copies the shakespeare_char dataset directory. | |
| - Runs the data preparation script to create meta.pkl and binary files. | |
| This function makes the script self-contained. | |
| """ | |
| nano_gpt_repo_path = 'nanoGPT' | |
| data_dir_path = 'shakespeare_char' | |
| meta_path = os.path.join(data_dir_path, 'meta.pkl') | |
| if os.path.exists(meta_path): | |
| print("Dataset and metadata found. Skipping setup.") | |
| return | |
| print("Required data not found. Starting one-time setup...") | |
| if not os.path.exists(nano_gpt_repo_path): | |
| print(f"Cloning nanoGPT repository...") | |
| try: | |
| subprocess.run( | |
| ['git', 'clone', 'https://github.com/karpathy/nanoGPT.git'], | |
| check=True, capture_output=True, text=True | |
| ) | |
| print("Cloned successfully.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"Error cloning repository: {e.stderr}") | |
| raise | |
| else: | |
| print("nanoGPT repository already exists.") | |
| source_data_dir = os.path.join(nano_gpt_repo_path, 'data', 'shakespeare_char') | |
| if not os.path.exists(data_dir_path): | |
| print(f"Copying '{source_data_dir}' to '{data_dir_path}'...") | |
| shutil.copytree(source_data_dir, data_dir_path) | |
| print("Copied successfully.") | |
| else: | |
| print(f"'{data_dir_path}' directory already exists.") | |
| prepare_script_path = os.path.join(data_dir_path, 'prepare.py') | |
| if not os.path.exists(meta_path): | |
| print(f"Running data preparation script: '{prepare_script_path}'...") | |
| try: | |
| subprocess.run( | |
| ['python', 'prepare.py'], | |
| check=True, cwd=data_dir_path, capture_output=True, text=True | |
| ) | |
| print("Data preparation script finished successfully.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"Error running prepare.py: {e.stderr}") | |
| raise | |
| print("Setup complete.") | |
| setup_environment() | |
| # --- 2. Global Setup & Helper Functions --- | |
| data_dir = './shakespeare_char/' | |
| meta_path = os.path.join(data_dir, 'meta.pkl') | |
| with open(meta_path, 'rb') as f: | |
| meta = pickle.load(f) | |
| vocab_size = meta['vocab_size'] | |
| itos = meta['itos'] | |
| stoi = meta['stoi'] | |
| context_length = 256 | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| def decode(indices_tensor: torch.Tensor): | |
| if indices_tensor.dim() > 1: | |
| indices_tensor = indices_tensor.squeeze(0) | |
| indices = indices_tensor.cpu().numpy() | |
| return ''.join([itos.get(i, '?') for i in indices]) | |
| def wrap_text(long_text, width=80): | |
| paragraphs = long_text.splitlines() | |
| wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs] | |
| return "\n".join(wrapped) | |
| # --- 3. Model Architecture (Identical to Notebook) --- | |
| class GPTConfig: | |
| block_size: int = 1024 | |
| vocab_size: int = 50304 | |
| n_layer: int = 12 | |
| n_head: int = 12 | |
| n_embd: int = 768 | |
| cond_dim: int = 64 | |
| dropout: float = 0.0 | |
| bias: bool = False | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | |
| self.gelu = nn.GELU() | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | |
| self.dropout = nn.Dropout(config.dropout) | |
| def forward(self, x): | |
| x = self.c_fc(x) | |
| x = self.gelu(x) | |
| x = self.c_proj(x) | |
| x = self.dropout(x) | |
| return x | |
| class SelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
| self.attn_dropout = nn.Dropout(config.dropout) | |
| self.resid_dropout = nn.Dropout(config.dropout) | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.dropout = config.dropout | |
| self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') | |
| def forward(self, x): | |
| B, T, C = x.size() | |
| q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| if self.flash: | |
| y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False) | |
| else: | |
| att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
| att = F.softmax(att, dim=-1) | |
| att = self.attn_dropout(att) | |
| y = att @ v | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) | |
| y = self.resid_dropout(self.c_proj(y)) | |
| return y | |
| def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: | |
| return x * (1 + scale) + shift | |
| def bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor: | |
| if bias is not None: | |
| out = scale * (x + bias) | |
| else: | |
| out = scale * x | |
| if residual is not None: | |
| out = residual + out | |
| return out | |
| class DDiTBlock(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias) | |
| self.attn = SelfAttention(config) | |
| self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias) | |
| self.mlp = MLP(config) | |
| self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd) | |
| self.adaLN_modulation.weight.data.zero_() | |
| self.adaLN_modulation.bias.data.zero_() | |
| def forward(self, x, c): | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2) | |
| x_skip = x | |
| x = modulate(self.ln_1(x), shift_msa, scale_msa) | |
| x = self.attn(x) | |
| x = bias_add_scale(self.attn(self.ln_1(x)), None, gate_msa, x_skip) | |
| x = bias_add_scale(self.mlp(modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x) | |
| return x | |
| class DDitFinalLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias) | |
| self.linear = nn.Linear(config.n_embd, config.vocab_size) | |
| self.linear.weight.data.zero_() | |
| self.linear.bias.data.zero_() | |
| self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd) | |
| self.adaLN_modulation.weight.data.zero_() | |
| self.adaLN_modulation.bias.data.zero_() | |
| def forward(self, x, c): | |
| shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2) | |
| x = modulate(self.norm_final(x), shift, scale) | |
| x = self.linear(x) | |
| return x | |
| class TimestepEmbedder(nn.Module): | |
| def __init__(self, hidden_size, frequency_embedding_size=256): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, hidden_size, bias=True), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t, dim, max_period=10000): | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
| ).to(device=t.device) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t): | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.vocab_size is not None | |
| assert config.block_size is not None | |
| self.config = config | |
| self.sigma_map = TimestepEmbedder(config.cond_dim) | |
| self.transformer = nn.ModuleDict(dict( | |
| wte = nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe = nn.Embedding(config.block_size, config.n_embd), | |
| drop = nn.Dropout(config.dropout), | |
| h = nn.ModuleList([DDiTBlock(config) for _ in range(config.n_layer)]), | |
| ln_f = nn.LayerNorm(config.n_embd, bias=config.bias), | |
| )) | |
| self.lm_head = DDitFinalLayer(config) | |
| self.apply(self._init_weights) | |
| for pn, p in self.named_parameters(): | |
| if pn.endswith('c_proj.weight'): | |
| torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| def forward(self, idx, sigma): | |
| sigma = sigma.reshape(-1) | |
| b, t = idx.size() | |
| c = F.silu(self.sigma_map(sigma)) | |
| assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
| pos = torch.arange(0, t, dtype=torch.long, device=device) | |
| tok_emb = self.transformer.wte(idx) | |
| pos_emb = self.transformer.wpe(pos) | |
| x = self.transformer.drop(tok_emb + pos_emb) | |
| for block in self.transformer.h: | |
| x = block(x, c) | |
| x = self.transformer.ln_f(x) | |
| x = self.lm_head(x, c) | |
| x = torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1])) | |
| return x | |
| class GeometricNoise: | |
| def __init__(self, sigma_min=1e-4, sigma_max=20): | |
| self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max]).to(device) | |
| def rate_noise(self, t): | |
| return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log()) | |
| def total_noise(self, t): | |
| return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t | |
| def __call__(self, t): | |
| return self.total_noise(t), self.rate_noise(t) | |
| # --- 4. Inference & Sampling Logic (Identical to Notebook) --- | |
| def transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor: | |
| base_prob = (1 - torch.exp(-delta_sigma[..., None])) / vocab_size | |
| trans = torch.ones(*x_t.shape, vocab_size, device=x_t.device) * base_prob | |
| trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans)) | |
| diag_fill = 1 - trans.sum(dim=-1, keepdim=True) | |
| trans = trans.scatter(-1, x_t[..., None], diag_fill) | |
| return trans | |
| def staggered_score(score, delta_sigma): | |
| exp_factor = torch.exp(-delta_sigma)[..., None] | |
| correction = ((exp_factor - 1) / (vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True) | |
| return correction + score / exp_factor | |
| def sample_categorical(probs: torch.Tensor) -> torch.Tensor: | |
| eps = 1e-10 | |
| gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps) | |
| return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1) | |
| # --- 5. Model Initialization and Loading --- | |
| print("Initializing and loading the pretrained model...") | |
| model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64, | |
| bias=False, vocab_size=vocab_size, block_size=context_length, dropout=0.2) | |
| config = GPTConfig(**model_args) | |
| model = GPT(config) | |
| model.load_state_dict( | |
| torch.hub.load_state_dict_from_url( | |
| 'https://raw.githubusercontent.com/ash80/diffusion-gpt/master/pretrained_model/model_epoch_25.pth', | |
| map_location=device | |
| ) | |
| ) | |
| model.to(device) | |
| model.eval() | |
| noise = GeometricNoise(sigma_min=1e-4, sigma_max=20) | |
| print("Model loaded successfully.") | |
| # --- 6. Gradio Interface Logic --- | |
| def generate_text(steps): | |
| """ | |
| Fast generation phase. Runs the diffusion process and stores all | |
| intermediate frames in a list, then returns the final text and the list. | |
| """ | |
| steps = int(steps) | |
| eps = 1e-5 | |
| # List to store each frame of the diffusion process | |
| diffusion_frames = [] | |
| # Start with a random sample | |
| x = torch.randint(0, vocab_size, (1, context_length), device=device) | |
| initial_text = f"--- Initial Random Noise ---\n\n{wrap_text(decode(x[0]))}" | |
| diffusion_frames.append(initial_text) | |
| timesteps = torch.linspace(1, eps, steps + 1, device=device) | |
| step_size = (1 - eps) / steps | |
| with torch.no_grad(): | |
| for i in range(steps): | |
| t = timesteps[i] * torch.ones(x.shape[0], 1, device=device) | |
| curr_sigma_bar = noise(t)[0] | |
| next_sigma_bar = noise(t - step_size)[0] | |
| delta_sigma = curr_sigma_bar - next_sigma_bar | |
| log_score = model(x, curr_sigma_bar) | |
| score = torch.exp(log_score) | |
| stag_score = staggered_score(score, delta_sigma) | |
| probs = stag_score * transition(x, delta_sigma) | |
| x = sample_categorical(probs) | |
| # Store the frame | |
| progress_text = f"--- Denoising Step {i + 1}/{steps} ---\n\n{wrap_text(decode(x[0]))}" | |
| diffusion_frames.append(progress_text) | |
| # Final denoising step | |
| t = timesteps[steps] * torch.ones(x.shape[0], 1, device=device) | |
| curr_sigma_bar = noise(t)[0] | |
| delta_sigma = curr_sigma_bar | |
| log_score = model(x, curr_sigma_bar) | |
| score = torch.exp(log_score) | |
| stag_score = staggered_score(score, delta_sigma) | |
| probs = stag_score * transition(x, delta_sigma) | |
| x = sample_categorical(probs) | |
| final_text = f"--- Final Denoised Text (Step {steps}) ---\n\n{wrap_text(decode(x[0]))}" | |
| diffusion_frames.append(final_text) | |
| # Return the final text and the complete list of frames | |
| return final_text, diffusion_frames | |
| def replay_diffusion(frames, replay_speed): | |
| """ | |
| Slow replay phase. Iterates through the stored frames and yields them | |
| with a delay to create an animation effect. | |
| """ | |
| delay = 0.5 / replay_speed # Calculate delay based on speed multiplier | |
| for frame in frames: | |
| yield frame | |
| time.sleep(delay) | |
| # Define the Gradio UI | |
| css = '''.gradio-container > .fillable {max-width: 720px !important} | |
| h3{margin-top: 1em} | |
| p{margin-top: 0} | |
| textarea{font-family: monospace;background-color: black} | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| gr.Markdown( | |
| """ | |
| # The Annotated Discrete Diffusion Models | |
| ### Tiny 7.23M parameters Shakespeare character diffusion model by [Ashwani Kumar](https://x.com/ash_at_tt/status/1977376958859092250) | |
| [GitHub](https://github.com/ash80/diffusion-gpt), [Colab](https://colab.research.google.com/github/ash80/diffusion-gpt/blob/master/The_Annotated_Discrete_Diffusion_Models.ipynb) | |
| """ | |
| ) | |
| generate_button = gr.Button("Generate", variant="primary") | |
| output_textbox = gr.Textbox( | |
| label="Generated Text", | |
| lines=15, | |
| interactive=False, | |
| show_copy_button=True, | |
| placeholder="Generation will appear here..." | |
| ) | |
| with gr.Row(): | |
| steps_slider = gr.Slider( | |
| minimum=64, | |
| maximum=512, | |
| value=128, | |
| step=1, | |
| label="Denoising Steps", | |
| info="Number of steps in the generation process." | |
| ) | |
| speed_slider = gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| value=10, | |
| step=1, | |
| label="Replay Speed", | |
| info="Controls the speed of the animation after generation.", | |
| visible=False | |
| ) | |
| diffusion_frames_state = gr.State([]) | |
| generate_event = generate_button.click( | |
| fn=generate_text, | |
| inputs=[steps_slider], | |
| outputs=[output_textbox, diffusion_frames_state] | |
| ).then( | |
| fn=replay_diffusion, | |
| inputs=[diffusion_frames_state, speed_slider], | |
| outputs=[output_textbox] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |