Spaces:
Running
Running
Commit
·
1d06c07
1
Parent(s):
af233cd
Update app.py
Browse files
app.py
CHANGED
@@ -122,7 +122,7 @@ def process_url(url, profile, do_download=True, folder="."):
|
|
122 |
else:
|
123 |
raise gr.Error("Something went wrong in fetching CivitAI API")
|
124 |
|
125 |
-
def create_readme(info, downloaded_files, link_civit=False, is_author=True, folder="."):
|
126 |
readme_content = ""
|
127 |
original_url = f"https://civitai.com/models/{info['modelId']}"
|
128 |
link_civit_disclaimer = f'([CivitAI]({original_url}))'
|
@@ -131,6 +131,9 @@ def create_readme(info, downloaded_files, link_civit=False, is_author=True, fold
|
|
131 |
civit_tags = [t for t in info["tags"] if t not in default_tags]
|
132 |
tags = default_tags + civit_tags
|
133 |
unpacked_tags = "\n- ".join(tags)
|
|
|
|
|
|
|
134 |
|
135 |
widget_content = ""
|
136 |
for index, (prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageName"])):
|
@@ -162,14 +165,39 @@ widget:
|
|
162 |
|
163 |
{link_civit_disclaimer if link_civit else ''}
|
164 |
|
|
|
|
|
165 |
{info["description"]}
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
"""
|
168 |
-
for index, (image, prompt) in enumerate(zip(downloaded_files["imageName"], downloaded_files["imagePrompt"])):
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
readme_content += content + "\n"
|
174 |
print(readme_content)
|
175 |
with open(f"{folder}/README.md", "w") as file:
|
@@ -262,7 +290,8 @@ def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], url, link_civit=False
|
|
262 |
folder = str(uuid.uuid4())
|
263 |
os.makedirs(folder, exist_ok=False)
|
264 |
info, downloaded_files = process_url(url, profile, folder=folder)
|
265 |
-
|
|
|
266 |
try:
|
267 |
api = HfApi(token=os.environ["HUGGING_FACE_HUB_TOKEN"])
|
268 |
username = api.whoami()["name"]
|
@@ -279,7 +308,7 @@ def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], url, link_civit=False
|
|
279 |
raise gr.Error("something went wrong")
|
280 |
|
281 |
transfer_repos = gr.load("multimodalart/transfer_repos", hf_token=os.environ["HUGGING_FACE_HUB_TOKEN"], src="spaces")
|
282 |
-
|
283 |
response_code = transfer_repos(repo_id, user_repo_id)
|
284 |
i = 0
|
285 |
while response_code != "200":
|
|
|
122 |
else:
|
123 |
raise gr.Error("Something went wrong in fetching CivitAI API")
|
124 |
|
125 |
+
def create_readme(info, downloaded_files, user_repo_id, link_civit=False, is_author=True, folder="."):
|
126 |
readme_content = ""
|
127 |
original_url = f"https://civitai.com/models/{info['modelId']}"
|
128 |
link_civit_disclaimer = f'([CivitAI]({original_url}))'
|
|
|
131 |
civit_tags = [t for t in info["tags"] if t not in default_tags]
|
132 |
tags = default_tags + civit_tags
|
133 |
unpacked_tags = "\n- ".join(tags)
|
134 |
+
|
135 |
+
trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else []
|
136 |
+
formatted_words = ', '.join(f'`{word}`' for word in trained_words)
|
137 |
|
138 |
widget_content = ""
|
139 |
for index, (prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageName"])):
|
|
|
165 |
|
166 |
{link_civit_disclaimer if link_civit else ''}
|
167 |
|
168 |
+
## Model description
|
169 |
+
|
170 |
{info["description"]}
|
171 |
|
172 |
+
## Trigger words
|
173 |
+
|
174 |
+
You should use {formatted_words} to trigger the image generation.
|
175 |
+
|
176 |
+
## Download model
|
177 |
+
|
178 |
+
Weights for this model are available in Safetensors format.
|
179 |
+
|
180 |
+
[Download](/{user_repo_id}/tree/main) them in the Files & versions tab.
|
181 |
+
|
182 |
+
## Use it with diffusers
|
183 |
+
|
184 |
+
```py
|
185 |
+
from diffusers import AutoPipelineForText2Image
|
186 |
+
import torch
|
187 |
+
|
188 |
+
pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype=torch.float16).to("cuda")
|
189 |
+
pipeline.load_lora_weights("{{user_repo_id}, weight_name='{downloaded_files["weightName"]}')
|
190 |
+
image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0]
|
191 |
+
```
|
192 |
+
|
193 |
+
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
194 |
+
|
195 |
"""
|
196 |
+
#for index, (image, prompt) in enumerate(zip(downloaded_files["imageName"], downloaded_files["imagePrompt"])):
|
197 |
+
# if index == 1:
|
198 |
+
# content += f"## Image examples for the model:\n![Image {index}]({image})\n> {prompt}\n"
|
199 |
+
# elif index > 1:
|
200 |
+
# content += f"\n![Image {index}]({image})\n> {prompt}\n"
|
201 |
readme_content += content + "\n"
|
202 |
print(readme_content)
|
203 |
with open(f"{folder}/README.md", "w") as file:
|
|
|
290 |
folder = str(uuid.uuid4())
|
291 |
os.makedirs(folder, exist_ok=False)
|
292 |
info, downloaded_files = process_url(url, profile, folder=folder)
|
293 |
+
user_repo_id = f"{profile.preferred_username}/{slug_name}"
|
294 |
+
create_readme(info, downloaded_files, user_repo_id, link_civit, folder=folder)
|
295 |
try:
|
296 |
api = HfApi(token=os.environ["HUGGING_FACE_HUB_TOKEN"])
|
297 |
username = api.whoami()["name"]
|
|
|
308 |
raise gr.Error("something went wrong")
|
309 |
|
310 |
transfer_repos = gr.load("multimodalart/transfer_repos", hf_token=os.environ["HUGGING_FACE_HUB_TOKEN"], src="spaces")
|
311 |
+
|
312 |
response_code = transfer_repos(repo_id, user_repo_id)
|
313 |
i = 0
|
314 |
while response_code != "200":
|