radames commited on
Commit
592470d
·
1 Parent(s): 23d11db

better defaults

Browse files
README.md CHANGED
@@ -28,8 +28,9 @@ python -m venv venv
28
  source venv/bin/activate
29
  pip3 install -r requirements.txt
30
  cd frontend && npm install && npm run build && cd ..
31
- python run.py --reload --pipeline controlnet
32
- ```
 
33
 
34
  # Pipelines
35
  You can build your own pipeline following examples here [here](pipelines),
 
28
  source venv/bin/activate
29
  pip3 install -r requirements.txt
30
  cd frontend && npm install && npm run build && cd ..
31
+ # fastest pipeline
32
+ python run.py --reload --pipeline img2imgSD21Turbo
33
+ ```
34
 
35
  # Pipelines
36
  You can build your own pipeline following examples here [here](pipelines),
app.py CHANGED
@@ -12,7 +12,7 @@ print("TORCH_DTYPE:", torch_dtype)
12
  print("PIPELINE:", args.pipeline)
13
  print("SAFETY_CHECKER:", args.safety_checker)
14
  print("TORCH_COMPILE:", args.torch_compile)
15
- print("USE_TAESD:", args.use_taesd)
16
  print("COMPEL:", args.compel)
17
  print("DEBUG:", args.debug)
18
 
 
12
  print("PIPELINE:", args.pipeline)
13
  print("SAFETY_CHECKER:", args.safety_checker)
14
  print("TORCH_COMPILE:", args.torch_compile)
15
+ print("USE_TAESD:", args.taesd)
16
  print("COMPEL:", args.compel)
17
  print("DEBUG:", args.debug)
18
 
config.py CHANGED
@@ -12,7 +12,7 @@ class Args(NamedTuple):
12
  timeout: float
13
  safety_checker: bool
14
  torch_compile: bool
15
- use_taesd: bool
16
  pipeline: str
17
  ssl_certfile: str
18
  ssl_keyfile: str
@@ -24,7 +24,7 @@ MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
24
  TIMEOUT = float(os.environ.get("TIMEOUT", 0))
25
  SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) == "True"
26
  TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) == "True"
27
- USE_TAESD = os.environ.get("USE_TAESD", None) == "True"
28
  default_host = os.getenv("HOST", "0.0.0.0")
29
  default_port = int(os.getenv("PORT", "7860"))
30
  default_mode = os.getenv("MODE", "default")
@@ -38,7 +38,7 @@ parser.add_argument(
38
  )
39
  parser.add_argument(
40
  "--max-queue-size",
41
- "--max_queue_size",
42
  type=int,
43
  default=MAX_QUEUE_SIZE,
44
  help="Max Queue Size",
@@ -46,23 +46,28 @@ parser.add_argument(
46
  parser.add_argument("--timeout", type=float, default=TIMEOUT, help="Timeout")
47
  parser.add_argument(
48
  "--safety-checker",
49
- "--safety_checker",
50
  action="store_true",
51
  default=SAFETY_CHECKER,
52
  help="Safety Checker",
53
  )
54
  parser.add_argument(
55
  "--torch-compile",
56
- "--torch_compile",
57
  action="store_true",
58
  default=TORCH_COMPILE,
59
  help="Torch Compile",
60
  )
61
  parser.add_argument(
62
- "--use-taesd",
63
- "--use_taesd",
64
  action="store_true",
65
- default=USE_TAESD,
 
 
 
 
 
66
  help="Use Tiny Autoencoder",
67
  )
68
  parser.add_argument(
@@ -73,14 +78,14 @@ parser.add_argument(
73
  )
74
  parser.add_argument(
75
  "--ssl-certfile",
76
- "--ssl_certfile",
77
  type=str,
78
  default=None,
79
  help="SSL certfile",
80
  )
81
  parser.add_argument(
82
  "--ssl-keyfile",
83
- "--ssl_keyfile",
84
  type=str,
85
  default=None,
86
  help="SSL keyfile",
@@ -97,5 +102,6 @@ parser.add_argument(
97
  default=False,
98
  help="Compel",
99
  )
 
100
 
101
  args = Args(**vars(parser.parse_args()))
 
12
  timeout: float
13
  safety_checker: bool
14
  torch_compile: bool
15
+ taesd: bool
16
  pipeline: str
17
  ssl_certfile: str
18
  ssl_keyfile: str
 
24
  TIMEOUT = float(os.environ.get("TIMEOUT", 0))
25
  SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) == "True"
26
  TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) == "True"
27
+ USE_TAESD = os.environ.get("USE_TAESD", "True") == "True"
28
  default_host = os.getenv("HOST", "0.0.0.0")
29
  default_port = int(os.getenv("PORT", "7860"))
30
  default_mode = os.getenv("MODE", "default")
 
38
  )
39
  parser.add_argument(
40
  "--max-queue-size",
41
+ dest="max_queue_size",
42
  type=int,
43
  default=MAX_QUEUE_SIZE,
44
  help="Max Queue Size",
 
46
  parser.add_argument("--timeout", type=float, default=TIMEOUT, help="Timeout")
47
  parser.add_argument(
48
  "--safety-checker",
49
+ dest="safety_checker",
50
  action="store_true",
51
  default=SAFETY_CHECKER,
52
  help="Safety Checker",
53
  )
54
  parser.add_argument(
55
  "--torch-compile",
56
+ dest="torch_compile",
57
  action="store_true",
58
  default=TORCH_COMPILE,
59
  help="Torch Compile",
60
  )
61
  parser.add_argument(
62
+ "--taesd",
63
+ dest="taesd",
64
  action="store_true",
65
+ help="Use Tiny Autoencoder",
66
+ )
67
+ parser.add_argument(
68
+ "--no-taesd",
69
+ dest="taesd",
70
+ action="store_false",
71
  help="Use Tiny Autoencoder",
72
  )
73
  parser.add_argument(
 
78
  )
79
  parser.add_argument(
80
  "--ssl-certfile",
81
+ dest="ssl_certfile",
82
  type=str,
83
  default=None,
84
  help="SSL certfile",
85
  )
86
  parser.add_argument(
87
  "--ssl-keyfile",
88
+ dest="ssl_keyfile",
89
  type=str,
90
  default=None,
91
  help="SSL keyfile",
 
102
  default=False,
103
  help="Compel",
104
  )
105
+ parser.set_defaults(taesd=USE_TAESD)
106
 
107
  args = Args(**vars(parser.parse_args()))
pipelines/controlnelSD21Turbo.py CHANGED
@@ -176,7 +176,7 @@ class Pipeline:
176
  safety_checker=None,
177
  )
178
 
179
- if args.use_taesd:
180
  self.pipe.vae = AutoencoderTiny.from_pretrained(
181
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
182
  ).to(device)
@@ -196,7 +196,7 @@ class Pipeline:
196
  text_encoder=self.pipe.text_encoder,
197
  truncate_long_prompts=True,
198
  )
199
- if args.use_taesd:
200
  self.pipe.vae = AutoencoderTiny.from_pretrained(
201
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
202
  ).to(device)
 
176
  safety_checker=None,
177
  )
178
 
179
+ if args.taesd:
180
  self.pipe.vae = AutoencoderTiny.from_pretrained(
181
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
182
  ).to(device)
 
196
  text_encoder=self.pipe.text_encoder,
197
  truncate_long_prompts=True,
198
  )
199
+ if args.taesd:
200
  self.pipe.vae = AutoencoderTiny.from_pretrained(
201
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
202
  ).to(device)
pipelines/controlnet.py CHANGED
@@ -169,7 +169,7 @@ class Pipeline:
169
  safety_checker=None,
170
  controlnet=controlnet_canny,
171
  )
172
- if args.use_taesd:
173
  self.pipe.vae = AutoencoderTiny.from_pretrained(
174
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
175
  ).to(device)
 
169
  safety_checker=None,
170
  controlnet=controlnet_canny,
171
  )
172
+ if args.taesd:
173
  self.pipe.vae = AutoencoderTiny.from_pretrained(
174
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
175
  ).to(device)
pipelines/controlnetLoraSD15.py CHANGED
@@ -202,7 +202,7 @@ class Pipeline:
202
  if psutil.virtual_memory().total < 64 * 1024**3:
203
  pipe.enable_attention_slicing()
204
 
205
- if args.use_taesd:
206
  pipe.vae = AutoencoderTiny.from_pretrained(
207
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
208
  ).to(device)
 
202
  if psutil.virtual_memory().total < 64 * 1024**3:
203
  pipe.enable_attention_slicing()
204
 
205
+ if args.taesd:
206
  pipe.vae = AutoencoderTiny.from_pretrained(
207
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
208
  ).to(device)
pipelines/controlnetLoraSDXL.py CHANGED
@@ -211,7 +211,7 @@ class Pipeline:
211
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
212
  requires_pooled=[False, True],
213
  )
214
- if args.use_taesd:
215
  self.pipe.vae = AutoencoderTiny.from_pretrained(
216
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
217
  ).to(device)
 
211
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
212
  requires_pooled=[False, True],
213
  )
214
+ if args.taesd:
215
  self.pipe.vae = AutoencoderTiny.from_pretrained(
216
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
217
  ).to(device)
pipelines/controlnetSDXLTurbo.py CHANGED
@@ -199,7 +199,7 @@ class Pipeline:
199
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
200
  requires_pooled=[False, True],
201
  )
202
- if args.use_taesd:
203
  self.pipe.vae = AutoencoderTiny.from_pretrained(
204
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
205
  ).to(device)
 
199
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
200
  requires_pooled=[False, True],
201
  )
202
+ if args.taesd:
203
  self.pipe.vae = AutoencoderTiny.from_pretrained(
204
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
205
  ).to(device)
pipelines/controlnetSegmindVegaRT.py CHANGED
@@ -208,7 +208,7 @@ class Pipeline:
208
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
209
  requires_pooled=[False, True],
210
  )
211
- if args.use_taesd:
212
  self.pipe.vae = AutoencoderTiny.from_pretrained(
213
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
214
  ).to(device)
 
208
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
209
  requires_pooled=[False, True],
210
  )
211
+ if args.taesd:
212
  self.pipe.vae = AutoencoderTiny.from_pretrained(
213
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
214
  ).to(device)
pipelines/img2img.py CHANGED
@@ -102,7 +102,7 @@ class Pipeline:
102
  base_model,
103
  safety_checker=None,
104
  )
105
- if args.use_taesd:
106
  self.pipe.vae = AutoencoderTiny.from_pretrained(
107
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
108
  ).to(device)
 
102
  base_model,
103
  safety_checker=None,
104
  )
105
+ if args.taesd:
106
  self.pipe.vae = AutoencoderTiny.from_pretrained(
107
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
108
  ).to(device)
pipelines/img2imgSD21Turbo.py CHANGED
@@ -99,7 +99,7 @@ class Pipeline:
99
  base_model,
100
  safety_checker=None,
101
  )
102
- if args.use_taesd:
103
  self.pipe.vae = AutoencoderTiny.from_pretrained(
104
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
105
  ).to(device)
@@ -158,7 +158,7 @@ class Pipeline:
158
  generator=generator,
159
  strength=strength,
160
  num_inference_steps=steps,
161
- guidance_scale=1.0,
162
  width=params.width,
163
  height=params.height,
164
  output_type="pil",
 
99
  base_model,
100
  safety_checker=None,
101
  )
102
+ if args.taesd:
103
  self.pipe.vae = AutoencoderTiny.from_pretrained(
104
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
105
  ).to(device)
 
158
  generator=generator,
159
  strength=strength,
160
  num_inference_steps=steps,
161
+ guidance_scale=1.1,
162
  width=params.width,
163
  height=params.height,
164
  output_type="pil",
pipelines/img2imgSDXLTurbo.py CHANGED
@@ -110,7 +110,7 @@ class Pipeline:
110
  base_model,
111
  safety_checker=None,
112
  )
113
- if args.use_taesd:
114
  self.pipe.vae = AutoencoderTiny.from_pretrained(
115
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
116
  ).to(device)
 
110
  base_model,
111
  safety_checker=None,
112
  )
113
+ if args.taesd:
114
  self.pipe.vae = AutoencoderTiny.from_pretrained(
115
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
116
  ).to(device)
pipelines/img2imgSegmindVegaRT.py CHANGED
@@ -116,7 +116,7 @@ class Pipeline:
116
  safety_checker=None,
117
  variant="fp16",
118
  )
119
- if args.use_taesd:
120
  self.pipe.vae = AutoencoderTiny.from_pretrained(
121
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
122
  ).to(device)
 
116
  safety_checker=None,
117
  variant="fp16",
118
  )
119
+ if args.taesd:
120
  self.pipe.vae = AutoencoderTiny.from_pretrained(
121
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
122
  ).to(device)
pipelines/txt2img.py CHANGED
@@ -85,7 +85,7 @@ class Pipeline:
85
  self.pipe = DiffusionPipeline.from_pretrained(
86
  base_model, safety_checker=None
87
  )
88
- if args.use_taesd:
89
  self.pipe.vae = AutoencoderTiny.from_pretrained(
90
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
91
  ).to(device)
 
85
  self.pipe = DiffusionPipeline.from_pretrained(
86
  base_model, safety_checker=None
87
  )
88
+ if args.taesd:
89
  self.pipe.vae = AutoencoderTiny.from_pretrained(
90
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
91
  ).to(device)
pipelines/txt2imgLora.py CHANGED
@@ -92,7 +92,7 @@ class Pipeline:
92
  self.pipe = DiffusionPipeline.from_pretrained(
93
  base_model, safety_checker=None
94
  )
95
- if args.use_taesd:
96
  self.pipe.vae = AutoencoderTiny.from_pretrained(
97
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
98
  ).to(device)
 
92
  self.pipe = DiffusionPipeline.from_pretrained(
93
  base_model, safety_checker=None
94
  )
95
+ if args.taesd:
96
  self.pipe.vae = AutoencoderTiny.from_pretrained(
97
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
98
  ).to(device)
pipelines/txt2imgLoraSDXL.py CHANGED
@@ -123,7 +123,7 @@ class Pipeline:
123
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
124
  requires_pooled=[False, True],
125
  )
126
- if args.use_taesd:
127
  self.pipe.vae = AutoencoderTiny.from_pretrained(
128
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
129
  ).to(device)
 
123
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
124
  requires_pooled=[False, True],
125
  )
126
+ if args.taesd:
127
  self.pipe.vae = AutoencoderTiny.from_pretrained(
128
  taesd_model, torch_dtype=torch_dtype, use_safetensors=True
129
  ).to(device)