multimodalart HF staff commited on
Commit
e60abae
1 Parent(s): 30ca9a4

Upload 9 files

Browse files
ip_adapter/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull
2
+
3
+ __all__ = [
4
+ "IPAdapter",
5
+ "IPAdapterPlus",
6
+ "IPAdapterPlusXL",
7
+ "IPAdapterXL",
8
+ "IPAdapterFull",
9
+ ]
ip_adapter/attention_processor.py ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+
7
+ class AttnProcessor(nn.Module):
8
+ r"""
9
+ Default processor for performing attention-related computations.
10
+ """
11
+
12
+ def __init__(
13
+ self,
14
+ hidden_size=None,
15
+ cross_attention_dim=None,
16
+ ):
17
+ super().__init__()
18
+
19
+ def __call__(
20
+ self,
21
+ attn,
22
+ hidden_states,
23
+ encoder_hidden_states=None,
24
+ attention_mask=None,
25
+ temb=None,
26
+ ):
27
+ residual = hidden_states
28
+
29
+ if attn.spatial_norm is not None:
30
+ hidden_states = attn.spatial_norm(hidden_states, temb)
31
+
32
+ input_ndim = hidden_states.ndim
33
+
34
+ if input_ndim == 4:
35
+ batch_size, channel, height, width = hidden_states.shape
36
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
37
+
38
+ batch_size, sequence_length, _ = (
39
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
40
+ )
41
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
42
+
43
+ if attn.group_norm is not None:
44
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
45
+
46
+ query = attn.to_q(hidden_states)
47
+
48
+ if encoder_hidden_states is None:
49
+ encoder_hidden_states = hidden_states
50
+ elif attn.norm_cross:
51
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
52
+
53
+ key = attn.to_k(encoder_hidden_states)
54
+ value = attn.to_v(encoder_hidden_states)
55
+
56
+ query = attn.head_to_batch_dim(query)
57
+ key = attn.head_to_batch_dim(key)
58
+ value = attn.head_to_batch_dim(value)
59
+
60
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
61
+ hidden_states = torch.bmm(attention_probs, value)
62
+ hidden_states = attn.batch_to_head_dim(hidden_states)
63
+
64
+ # linear proj
65
+ hidden_states = attn.to_out[0](hidden_states)
66
+ # dropout
67
+ hidden_states = attn.to_out[1](hidden_states)
68
+
69
+ if input_ndim == 4:
70
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
71
+
72
+ if attn.residual_connection:
73
+ hidden_states = hidden_states + residual
74
+
75
+ hidden_states = hidden_states / attn.rescale_output_factor
76
+
77
+ return hidden_states
78
+
79
+
80
+ class IPAttnProcessor(nn.Module):
81
+ r"""
82
+ Attention processor for IP-Adapater.
83
+ Args:
84
+ hidden_size (`int`):
85
+ The hidden size of the attention layer.
86
+ cross_attention_dim (`int`):
87
+ The number of channels in the `encoder_hidden_states`.
88
+ scale (`float`, defaults to 1.0):
89
+ the weight scale of image prompt.
90
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
91
+ The context length of the image features.
92
+ """
93
+
94
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
95
+ super().__init__()
96
+
97
+ self.hidden_size = hidden_size
98
+ self.cross_attention_dim = cross_attention_dim
99
+ self.scale = scale
100
+ self.num_tokens = num_tokens
101
+
102
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
103
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
104
+
105
+ def __call__(
106
+ self,
107
+ attn,
108
+ hidden_states,
109
+ encoder_hidden_states=None,
110
+ attention_mask=None,
111
+ temb=None,
112
+ ):
113
+ residual = hidden_states
114
+
115
+ if attn.spatial_norm is not None:
116
+ hidden_states = attn.spatial_norm(hidden_states, temb)
117
+
118
+ input_ndim = hidden_states.ndim
119
+
120
+ if input_ndim == 4:
121
+ batch_size, channel, height, width = hidden_states.shape
122
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
123
+
124
+ batch_size, sequence_length, _ = (
125
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
126
+ )
127
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
128
+
129
+ if attn.group_norm is not None:
130
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
131
+
132
+ query = attn.to_q(hidden_states)
133
+
134
+ if encoder_hidden_states is None:
135
+ encoder_hidden_states = hidden_states
136
+ else:
137
+ # get encoder_hidden_states, ip_hidden_states
138
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
139
+ encoder_hidden_states, ip_hidden_states = (
140
+ encoder_hidden_states[:, :end_pos, :],
141
+ encoder_hidden_states[:, end_pos:, :],
142
+ )
143
+ if attn.norm_cross:
144
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
145
+
146
+ key = attn.to_k(encoder_hidden_states)
147
+ value = attn.to_v(encoder_hidden_states)
148
+
149
+ query = attn.head_to_batch_dim(query)
150
+ key = attn.head_to_batch_dim(key)
151
+ value = attn.head_to_batch_dim(value)
152
+
153
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
154
+ hidden_states = torch.bmm(attention_probs, value)
155
+ hidden_states = attn.batch_to_head_dim(hidden_states)
156
+
157
+ # for ip-adapter
158
+ ip_key = self.to_k_ip(ip_hidden_states)
159
+ ip_value = self.to_v_ip(ip_hidden_states)
160
+
161
+ ip_key = attn.head_to_batch_dim(ip_key)
162
+ ip_value = attn.head_to_batch_dim(ip_value)
163
+
164
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
165
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
166
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
167
+
168
+ hidden_states = hidden_states + self.scale * ip_hidden_states
169
+
170
+ # linear proj
171
+ hidden_states = attn.to_out[0](hidden_states)
172
+ # dropout
173
+ hidden_states = attn.to_out[1](hidden_states)
174
+
175
+ if input_ndim == 4:
176
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
177
+
178
+ if attn.residual_connection:
179
+ hidden_states = hidden_states + residual
180
+
181
+ hidden_states = hidden_states / attn.rescale_output_factor
182
+
183
+ return hidden_states
184
+
185
+
186
+ class AttnProcessor2_0(torch.nn.Module):
187
+ r"""
188
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
189
+ """
190
+
191
+ def __init__(
192
+ self,
193
+ hidden_size=None,
194
+ cross_attention_dim=None,
195
+ ):
196
+ super().__init__()
197
+ if not hasattr(F, "scaled_dot_product_attention"):
198
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
199
+
200
+ def __call__(
201
+ self,
202
+ attn,
203
+ hidden_states,
204
+ encoder_hidden_states=None,
205
+ attention_mask=None,
206
+ temb=None,
207
+ ):
208
+ residual = hidden_states
209
+
210
+ if attn.spatial_norm is not None:
211
+ hidden_states = attn.spatial_norm(hidden_states, temb)
212
+
213
+ input_ndim = hidden_states.ndim
214
+
215
+ if input_ndim == 4:
216
+ batch_size, channel, height, width = hidden_states.shape
217
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
218
+
219
+ batch_size, sequence_length, _ = (
220
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
221
+ )
222
+
223
+ if attention_mask is not None:
224
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
225
+ # scaled_dot_product_attention expects attention_mask shape to be
226
+ # (batch, heads, source_length, target_length)
227
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
228
+
229
+ if attn.group_norm is not None:
230
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
231
+
232
+ query = attn.to_q(hidden_states)
233
+
234
+ if encoder_hidden_states is None:
235
+ encoder_hidden_states = hidden_states
236
+ elif attn.norm_cross:
237
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
238
+
239
+ key = attn.to_k(encoder_hidden_states)
240
+ value = attn.to_v(encoder_hidden_states)
241
+
242
+ inner_dim = key.shape[-1]
243
+ head_dim = inner_dim // attn.heads
244
+
245
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
246
+
247
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
248
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
249
+
250
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
251
+ # TODO: add support for attn.scale when we move to Torch 2.1
252
+ hidden_states = F.scaled_dot_product_attention(
253
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
254
+ )
255
+
256
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
257
+ hidden_states = hidden_states.to(query.dtype)
258
+
259
+ # linear proj
260
+ hidden_states = attn.to_out[0](hidden_states)
261
+ # dropout
262
+ hidden_states = attn.to_out[1](hidden_states)
263
+
264
+ if input_ndim == 4:
265
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
266
+
267
+ if attn.residual_connection:
268
+ hidden_states = hidden_states + residual
269
+
270
+ hidden_states = hidden_states / attn.rescale_output_factor
271
+
272
+ return hidden_states
273
+
274
+
275
+ class IPAttnProcessor2_0(torch.nn.Module):
276
+ r"""
277
+ Attention processor for IP-Adapater for PyTorch 2.0.
278
+ Args:
279
+ hidden_size (`int`):
280
+ The hidden size of the attention layer.
281
+ cross_attention_dim (`int`):
282
+ The number of channels in the `encoder_hidden_states`.
283
+ scale (`float`, defaults to 1.0):
284
+ the weight scale of image prompt.
285
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
286
+ The context length of the image features.
287
+ """
288
+
289
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
290
+ super().__init__()
291
+
292
+ if not hasattr(F, "scaled_dot_product_attention"):
293
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
294
+
295
+ self.hidden_size = hidden_size
296
+ self.cross_attention_dim = cross_attention_dim
297
+ self.scale = scale
298
+ self.num_tokens = num_tokens
299
+
300
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
301
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
302
+
303
+ def __call__(
304
+ self,
305
+ attn,
306
+ hidden_states,
307
+ encoder_hidden_states=None,
308
+ attention_mask=None,
309
+ temb=None,
310
+ ):
311
+ residual = hidden_states
312
+
313
+ if attn.spatial_norm is not None:
314
+ hidden_states = attn.spatial_norm(hidden_states, temb)
315
+
316
+ input_ndim = hidden_states.ndim
317
+
318
+ if input_ndim == 4:
319
+ batch_size, channel, height, width = hidden_states.shape
320
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
321
+
322
+ batch_size, sequence_length, _ = (
323
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
324
+ )
325
+
326
+ if attention_mask is not None:
327
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
328
+ # scaled_dot_product_attention expects attention_mask shape to be
329
+ # (batch, heads, source_length, target_length)
330
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
331
+
332
+ if attn.group_norm is not None:
333
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
334
+
335
+ query = attn.to_q(hidden_states)
336
+
337
+ if encoder_hidden_states is None:
338
+ encoder_hidden_states = hidden_states
339
+ else:
340
+ # get encoder_hidden_states, ip_hidden_states
341
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
342
+ encoder_hidden_states, ip_hidden_states = (
343
+ encoder_hidden_states[:, :end_pos, :],
344
+ encoder_hidden_states[:, end_pos:, :],
345
+ )
346
+ if attn.norm_cross:
347
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
348
+
349
+ key = attn.to_k(encoder_hidden_states)
350
+ value = attn.to_v(encoder_hidden_states)
351
+
352
+ inner_dim = key.shape[-1]
353
+ head_dim = inner_dim // attn.heads
354
+
355
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
356
+
357
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
358
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
359
+
360
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
361
+ # TODO: add support for attn.scale when we move to Torch 2.1
362
+ hidden_states = F.scaled_dot_product_attention(
363
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
364
+ )
365
+
366
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
367
+ hidden_states = hidden_states.to(query.dtype)
368
+
369
+ # for ip-adapter
370
+ ip_key = self.to_k_ip(ip_hidden_states)
371
+ ip_value = self.to_v_ip(ip_hidden_states)
372
+
373
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
374
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
375
+
376
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
377
+ # TODO: add support for attn.scale when we move to Torch 2.1
378
+ ip_hidden_states = F.scaled_dot_product_attention(
379
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
380
+ )
381
+
382
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
383
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
384
+
385
+ hidden_states = hidden_states + self.scale * ip_hidden_states
386
+
387
+ # linear proj
388
+ hidden_states = attn.to_out[0](hidden_states)
389
+ # dropout
390
+ hidden_states = attn.to_out[1](hidden_states)
391
+
392
+ if input_ndim == 4:
393
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
394
+
395
+ if attn.residual_connection:
396
+ hidden_states = hidden_states + residual
397
+
398
+ hidden_states = hidden_states / attn.rescale_output_factor
399
+
400
+ return hidden_states
401
+
402
+
403
+ ## for controlnet
404
+ class CNAttnProcessor:
405
+ r"""
406
+ Default processor for performing attention-related computations.
407
+ """
408
+
409
+ def __init__(self, num_tokens=4):
410
+ self.num_tokens = num_tokens
411
+
412
+ def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
413
+ residual = hidden_states
414
+
415
+ if attn.spatial_norm is not None:
416
+ hidden_states = attn.spatial_norm(hidden_states, temb)
417
+
418
+ input_ndim = hidden_states.ndim
419
+
420
+ if input_ndim == 4:
421
+ batch_size, channel, height, width = hidden_states.shape
422
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
423
+
424
+ batch_size, sequence_length, _ = (
425
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
426
+ )
427
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
428
+
429
+ if attn.group_norm is not None:
430
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
431
+
432
+ query = attn.to_q(hidden_states)
433
+
434
+ if encoder_hidden_states is None:
435
+ encoder_hidden_states = hidden_states
436
+ else:
437
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
438
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
439
+ if attn.norm_cross:
440
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
441
+
442
+ key = attn.to_k(encoder_hidden_states)
443
+ value = attn.to_v(encoder_hidden_states)
444
+
445
+ query = attn.head_to_batch_dim(query)
446
+ key = attn.head_to_batch_dim(key)
447
+ value = attn.head_to_batch_dim(value)
448
+
449
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
450
+ hidden_states = torch.bmm(attention_probs, value)
451
+ hidden_states = attn.batch_to_head_dim(hidden_states)
452
+
453
+ # linear proj
454
+ hidden_states = attn.to_out[0](hidden_states)
455
+ # dropout
456
+ hidden_states = attn.to_out[1](hidden_states)
457
+
458
+ if input_ndim == 4:
459
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
460
+
461
+ if attn.residual_connection:
462
+ hidden_states = hidden_states + residual
463
+
464
+ hidden_states = hidden_states / attn.rescale_output_factor
465
+
466
+ return hidden_states
467
+
468
+
469
+ class CNAttnProcessor2_0:
470
+ r"""
471
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
472
+ """
473
+
474
+ def __init__(self, num_tokens=4):
475
+ if not hasattr(F, "scaled_dot_product_attention"):
476
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
477
+ self.num_tokens = num_tokens
478
+
479
+ def __call__(
480
+ self,
481
+ attn,
482
+ hidden_states,
483
+ encoder_hidden_states=None,
484
+ attention_mask=None,
485
+ temb=None,
486
+ ):
487
+ residual = hidden_states
488
+
489
+ if attn.spatial_norm is not None:
490
+ hidden_states = attn.spatial_norm(hidden_states, temb)
491
+
492
+ input_ndim = hidden_states.ndim
493
+
494
+ if input_ndim == 4:
495
+ batch_size, channel, height, width = hidden_states.shape
496
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
497
+
498
+ batch_size, sequence_length, _ = (
499
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
500
+ )
501
+
502
+ if attention_mask is not None:
503
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
504
+ # scaled_dot_product_attention expects attention_mask shape to be
505
+ # (batch, heads, source_length, target_length)
506
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
507
+
508
+ if attn.group_norm is not None:
509
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
510
+
511
+ query = attn.to_q(hidden_states)
512
+
513
+ if encoder_hidden_states is None:
514
+ encoder_hidden_states = hidden_states
515
+ else:
516
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
517
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
518
+ if attn.norm_cross:
519
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
520
+
521
+ key = attn.to_k(encoder_hidden_states)
522
+ value = attn.to_v(encoder_hidden_states)
523
+
524
+ inner_dim = key.shape[-1]
525
+ head_dim = inner_dim // attn.heads
526
+
527
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
528
+
529
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
530
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
531
+
532
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
533
+ # TODO: add support for attn.scale when we move to Torch 2.1
534
+ hidden_states = F.scaled_dot_product_attention(
535
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
536
+ )
537
+
538
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
539
+ hidden_states = hidden_states.to(query.dtype)
540
+
541
+ # linear proj
542
+ hidden_states = attn.to_out[0](hidden_states)
543
+ # dropout
544
+ hidden_states = attn.to_out[1](hidden_states)
545
+
546
+ if input_ndim == 4:
547
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
548
+
549
+ if attn.residual_connection:
550
+ hidden_states = hidden_states + residual
551
+
552
+ hidden_states = hidden_states / attn.rescale_output_factor
553
+
554
+ return hidden_states
ip_adapter/attention_processor_faceid.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from diffusers.models.lora import LoRALinearLayer
7
+
8
+
9
+ class LoRAAttnProcessor(nn.Module):
10
+ r"""
11
+ Default processor for performing attention-related computations.
12
+ """
13
+
14
+ def __init__(
15
+ self,
16
+ hidden_size=None,
17
+ cross_attention_dim=None,
18
+ rank=4,
19
+ network_alpha=None,
20
+ lora_scale=1.0,
21
+ ):
22
+ super().__init__()
23
+
24
+ self.rank = rank
25
+ self.lora_scale = lora_scale
26
+
27
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
28
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
29
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
30
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
31
+
32
+ def __call__(
33
+ self,
34
+ attn,
35
+ hidden_states,
36
+ encoder_hidden_states=None,
37
+ attention_mask=None,
38
+ temb=None,
39
+ ):
40
+ residual = hidden_states
41
+
42
+ if attn.spatial_norm is not None:
43
+ hidden_states = attn.spatial_norm(hidden_states, temb)
44
+
45
+ input_ndim = hidden_states.ndim
46
+
47
+ if input_ndim == 4:
48
+ batch_size, channel, height, width = hidden_states.shape
49
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
50
+
51
+ batch_size, sequence_length, _ = (
52
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
53
+ )
54
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
55
+
56
+ if attn.group_norm is not None:
57
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
58
+
59
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
60
+
61
+ if encoder_hidden_states is None:
62
+ encoder_hidden_states = hidden_states
63
+ elif attn.norm_cross:
64
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
65
+
66
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
67
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
68
+
69
+ query = attn.head_to_batch_dim(query)
70
+ key = attn.head_to_batch_dim(key)
71
+ value = attn.head_to_batch_dim(value)
72
+
73
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
74
+ hidden_states = torch.bmm(attention_probs, value)
75
+ hidden_states = attn.batch_to_head_dim(hidden_states)
76
+
77
+ # linear proj
78
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
79
+ # dropout
80
+ hidden_states = attn.to_out[1](hidden_states)
81
+
82
+ if input_ndim == 4:
83
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
84
+
85
+ if attn.residual_connection:
86
+ hidden_states = hidden_states + residual
87
+
88
+ hidden_states = hidden_states / attn.rescale_output_factor
89
+
90
+ return hidden_states
91
+
92
+
93
+ class LoRAIPAttnProcessor(nn.Module):
94
+ r"""
95
+ Attention processor for IP-Adapater.
96
+ Args:
97
+ hidden_size (`int`):
98
+ The hidden size of the attention layer.
99
+ cross_attention_dim (`int`):
100
+ The number of channels in the `encoder_hidden_states`.
101
+ scale (`float`, defaults to 1.0):
102
+ the weight scale of image prompt.
103
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
104
+ The context length of the image features.
105
+ """
106
+
107
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
108
+ super().__init__()
109
+
110
+ self.rank = rank
111
+ self.lora_scale = lora_scale
112
+
113
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
114
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
115
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
116
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
117
+
118
+ self.hidden_size = hidden_size
119
+ self.cross_attention_dim = cross_attention_dim
120
+ self.scale = scale
121
+ self.num_tokens = num_tokens
122
+
123
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
124
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
125
+
126
+ def __call__(
127
+ self,
128
+ attn,
129
+ hidden_states,
130
+ encoder_hidden_states=None,
131
+ attention_mask=None,
132
+ temb=None,
133
+ ):
134
+ residual = hidden_states
135
+
136
+ if attn.spatial_norm is not None:
137
+ hidden_states = attn.spatial_norm(hidden_states, temb)
138
+
139
+ input_ndim = hidden_states.ndim
140
+
141
+ if input_ndim == 4:
142
+ batch_size, channel, height, width = hidden_states.shape
143
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
144
+
145
+ batch_size, sequence_length, _ = (
146
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
147
+ )
148
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
149
+
150
+ if attn.group_norm is not None:
151
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
152
+
153
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
154
+
155
+ if encoder_hidden_states is None:
156
+ encoder_hidden_states = hidden_states
157
+ else:
158
+ # get encoder_hidden_states, ip_hidden_states
159
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
160
+ encoder_hidden_states, ip_hidden_states = (
161
+ encoder_hidden_states[:, :end_pos, :],
162
+ encoder_hidden_states[:, end_pos:, :],
163
+ )
164
+ if attn.norm_cross:
165
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
166
+
167
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
168
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
169
+
170
+ query = attn.head_to_batch_dim(query)
171
+ key = attn.head_to_batch_dim(key)
172
+ value = attn.head_to_batch_dim(value)
173
+
174
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
175
+ hidden_states = torch.bmm(attention_probs, value)
176
+ hidden_states = attn.batch_to_head_dim(hidden_states)
177
+
178
+ # for ip-adapter
179
+ ip_key = self.to_k_ip(ip_hidden_states)
180
+ ip_value = self.to_v_ip(ip_hidden_states)
181
+
182
+ ip_key = attn.head_to_batch_dim(ip_key)
183
+ ip_value = attn.head_to_batch_dim(ip_value)
184
+
185
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
186
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
187
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
188
+
189
+ hidden_states = hidden_states + self.scale * ip_hidden_states
190
+
191
+ # linear proj
192
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
193
+ # dropout
194
+ hidden_states = attn.to_out[1](hidden_states)
195
+
196
+ if input_ndim == 4:
197
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
198
+
199
+ if attn.residual_connection:
200
+ hidden_states = hidden_states + residual
201
+
202
+ hidden_states = hidden_states / attn.rescale_output_factor
203
+
204
+ return hidden_states
ip_adapter/custom_pipelines.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from diffusers import StableDiffusionXLPipeline
5
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
6
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
7
+
8
+ from .utils import is_torch2_available
9
+
10
+ if is_torch2_available():
11
+ from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor
12
+ else:
13
+ from .attention_processor import IPAttnProcessor
14
+
15
+
16
+ class StableDiffusionXLCustomPipeline(StableDiffusionXLPipeline):
17
+ def set_scale(self, scale):
18
+ for attn_processor in self.unet.attn_processors.values():
19
+ if isinstance(attn_processor, IPAttnProcessor):
20
+ attn_processor.scale = scale
21
+
22
+ @torch.no_grad()
23
+ def __call__( # noqa: C901
24
+ self,
25
+ prompt: Optional[Union[str, List[str]]] = None,
26
+ prompt_2: Optional[Union[str, List[str]]] = None,
27
+ height: Optional[int] = None,
28
+ width: Optional[int] = None,
29
+ num_inference_steps: int = 50,
30
+ denoising_end: Optional[float] = None,
31
+ guidance_scale: float = 5.0,
32
+ negative_prompt: Optional[Union[str, List[str]]] = None,
33
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
34
+ num_images_per_prompt: Optional[int] = 1,
35
+ eta: float = 0.0,
36
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
37
+ latents: Optional[torch.FloatTensor] = None,
38
+ prompt_embeds: Optional[torch.FloatTensor] = None,
39
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
40
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
41
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
42
+ output_type: Optional[str] = "pil",
43
+ return_dict: bool = True,
44
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
45
+ callback_steps: int = 1,
46
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
47
+ guidance_rescale: float = 0.0,
48
+ original_size: Optional[Tuple[int, int]] = None,
49
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
50
+ target_size: Optional[Tuple[int, int]] = None,
51
+ negative_original_size: Optional[Tuple[int, int]] = None,
52
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
53
+ negative_target_size: Optional[Tuple[int, int]] = None,
54
+ control_guidance_start: float = 0.0,
55
+ control_guidance_end: float = 1.0,
56
+ ):
57
+ r"""
58
+ Function invoked when calling the pipeline for generation.
59
+
60
+ Args:
61
+ prompt (`str` or `List[str]`, *optional*):
62
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
63
+ instead.
64
+ prompt_2 (`str` or `List[str]`, *optional*):
65
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
66
+ used in both text-encoders
67
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
68
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
69
+ Anything below 512 pixels won't work well for
70
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
71
+ and checkpoints that are not specifically fine-tuned on low resolutions.
72
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
73
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
74
+ Anything below 512 pixels won't work well for
75
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
76
+ and checkpoints that are not specifically fine-tuned on low resolutions.
77
+ num_inference_steps (`int`, *optional*, defaults to 50):
78
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
79
+ expense of slower inference.
80
+ denoising_end (`float`, *optional*):
81
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
82
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
83
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
84
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
85
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
86
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
87
+ guidance_scale (`float`, *optional*, defaults to 5.0):
88
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
89
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
90
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
91
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
92
+ usually at the expense of lower image quality.
93
+ negative_prompt (`str` or `List[str]`, *optional*):
94
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
95
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
96
+ less than `1`).
97
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
98
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
99
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
100
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
101
+ The number of images to generate per prompt.
102
+ eta (`float`, *optional*, defaults to 0.0):
103
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
104
+ [`schedulers.DDIMScheduler`], will be ignored for others.
105
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
106
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
107
+ to make generation deterministic.
108
+ latents (`torch.FloatTensor`, *optional*):
109
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
110
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
111
+ tensor will ge generated by sampling using the supplied random `generator`.
112
+ prompt_embeds (`torch.FloatTensor`, *optional*):
113
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
114
+ provided, text embeddings will be generated from `prompt` input argument.
115
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
116
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
117
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
118
+ argument.
119
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
120
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
121
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
122
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
123
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
124
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
125
+ input argument.
126
+ output_type (`str`, *optional*, defaults to `"pil"`):
127
+ The output format of the generate image. Choose between
128
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
129
+ return_dict (`bool`, *optional*, defaults to `True`):
130
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
131
+ of a plain tuple.
132
+ callback (`Callable`, *optional*):
133
+ A function that will be called every `callback_steps` steps during inference. The function will be
134
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
135
+ callback_steps (`int`, *optional*, defaults to 1):
136
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
137
+ called at every step.
138
+ cross_attention_kwargs (`dict`, *optional*):
139
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
140
+ `self.processor` in
141
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
142
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
143
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
144
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
145
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
146
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
147
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
148
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
149
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
150
+ explained in section 2.2 of
151
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
152
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
153
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
154
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
155
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
156
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
157
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
158
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
159
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
160
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
161
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
162
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
163
+ micro-conditioning as explained in section 2.2 of
164
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
165
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
166
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
167
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
168
+ micro-conditioning as explained in section 2.2 of
169
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
170
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
171
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
172
+ To negatively condition the generation process based on a target image resolution. It should be as same
173
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
174
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
175
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
176
+ control_guidance_start (`float`, *optional*, defaults to 0.0):
177
+ The percentage of total steps at which the ControlNet starts applying.
178
+ control_guidance_end (`float`, *optional*, defaults to 1.0):
179
+ The percentage of total steps at which the ControlNet stops applying.
180
+
181
+ Examples:
182
+
183
+ Returns:
184
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
185
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
186
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
187
+ """
188
+ # 0. Default height and width to unet
189
+ height = height or self.default_sample_size * self.vae_scale_factor
190
+ width = width or self.default_sample_size * self.vae_scale_factor
191
+
192
+ original_size = original_size or (height, width)
193
+ target_size = target_size or (height, width)
194
+
195
+ # 1. Check inputs. Raise error if not correct
196
+ self.check_inputs(
197
+ prompt,
198
+ prompt_2,
199
+ height,
200
+ width,
201
+ callback_steps,
202
+ negative_prompt,
203
+ negative_prompt_2,
204
+ prompt_embeds,
205
+ negative_prompt_embeds,
206
+ pooled_prompt_embeds,
207
+ negative_pooled_prompt_embeds,
208
+ )
209
+
210
+ # 2. Define call parameters
211
+ if prompt is not None and isinstance(prompt, str):
212
+ batch_size = 1
213
+ elif prompt is not None and isinstance(prompt, list):
214
+ batch_size = len(prompt)
215
+ else:
216
+ batch_size = prompt_embeds.shape[0]
217
+
218
+ device = self._execution_device
219
+
220
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
221
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
222
+ # corresponds to doing no classifier free guidance.
223
+ do_classifier_free_guidance = guidance_scale > 1.0
224
+
225
+ # 3. Encode input prompt
226
+ text_encoder_lora_scale = (
227
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
228
+ )
229
+ (
230
+ prompt_embeds,
231
+ negative_prompt_embeds,
232
+ pooled_prompt_embeds,
233
+ negative_pooled_prompt_embeds,
234
+ ) = self.encode_prompt(
235
+ prompt=prompt,
236
+ prompt_2=prompt_2,
237
+ device=device,
238
+ num_images_per_prompt=num_images_per_prompt,
239
+ do_classifier_free_guidance=do_classifier_free_guidance,
240
+ negative_prompt=negative_prompt,
241
+ negative_prompt_2=negative_prompt_2,
242
+ prompt_embeds=prompt_embeds,
243
+ negative_prompt_embeds=negative_prompt_embeds,
244
+ pooled_prompt_embeds=pooled_prompt_embeds,
245
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
246
+ lora_scale=text_encoder_lora_scale,
247
+ )
248
+
249
+ # 4. Prepare timesteps
250
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
251
+
252
+ timesteps = self.scheduler.timesteps
253
+
254
+ # 5. Prepare latent variables
255
+ num_channels_latents = self.unet.config.in_channels
256
+ latents = self.prepare_latents(
257
+ batch_size * num_images_per_prompt,
258
+ num_channels_latents,
259
+ height,
260
+ width,
261
+ prompt_embeds.dtype,
262
+ device,
263
+ generator,
264
+ latents,
265
+ )
266
+
267
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
268
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
269
+
270
+ # 7. Prepare added time ids & embeddings
271
+ add_text_embeds = pooled_prompt_embeds
272
+ if self.text_encoder_2 is None:
273
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
274
+ else:
275
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
276
+
277
+ add_time_ids = self._get_add_time_ids(
278
+ original_size,
279
+ crops_coords_top_left,
280
+ target_size,
281
+ dtype=prompt_embeds.dtype,
282
+ text_encoder_projection_dim=text_encoder_projection_dim,
283
+ )
284
+ if negative_original_size is not None and negative_target_size is not None:
285
+ negative_add_time_ids = self._get_add_time_ids(
286
+ negative_original_size,
287
+ negative_crops_coords_top_left,
288
+ negative_target_size,
289
+ dtype=prompt_embeds.dtype,
290
+ text_encoder_projection_dim=text_encoder_projection_dim,
291
+ )
292
+ else:
293
+ negative_add_time_ids = add_time_ids
294
+
295
+ if do_classifier_free_guidance:
296
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
297
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
298
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
299
+
300
+ prompt_embeds = prompt_embeds.to(device)
301
+ add_text_embeds = add_text_embeds.to(device)
302
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
303
+
304
+ # 8. Denoising loop
305
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
306
+
307
+ # 7.1 Apply denoising_end
308
+ if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
309
+ discrete_timestep_cutoff = int(
310
+ round(
311
+ self.scheduler.config.num_train_timesteps
312
+ - (denoising_end * self.scheduler.config.num_train_timesteps)
313
+ )
314
+ )
315
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
316
+ timesteps = timesteps[:num_inference_steps]
317
+
318
+ # get init conditioning scale
319
+ for attn_processor in self.unet.attn_processors.values():
320
+ if isinstance(attn_processor, IPAttnProcessor):
321
+ conditioning_scale = attn_processor.scale
322
+ break
323
+
324
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
325
+ for i, t in enumerate(timesteps):
326
+ if (i / len(timesteps) < control_guidance_start) or ((i + 1) / len(timesteps) > control_guidance_end):
327
+ self.set_scale(0.0)
328
+ else:
329
+ self.set_scale(conditioning_scale)
330
+
331
+ # expand the latents if we are doing classifier free guidance
332
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
333
+
334
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
335
+
336
+ # predict the noise residual
337
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
338
+ noise_pred = self.unet(
339
+ latent_model_input,
340
+ t,
341
+ encoder_hidden_states=prompt_embeds,
342
+ cross_attention_kwargs=cross_attention_kwargs,
343
+ added_cond_kwargs=added_cond_kwargs,
344
+ return_dict=False,
345
+ )[0]
346
+
347
+ # perform guidance
348
+ if do_classifier_free_guidance:
349
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
350
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
351
+
352
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
353
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
354
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
355
+
356
+ # compute the previous noisy sample x_t -> x_t-1
357
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
358
+
359
+ # call the callback, if provided
360
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
361
+ progress_bar.update()
362
+ if callback is not None and i % callback_steps == 0:
363
+ callback(i, t, latents)
364
+
365
+ if not output_type == "latent":
366
+ # make sure the VAE is in float32 mode, as it overflows in float16
367
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
368
+
369
+ if needs_upcasting:
370
+ self.upcast_vae()
371
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
372
+
373
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
374
+
375
+ # cast back to fp16 if needed
376
+ if needs_upcasting:
377
+ self.vae.to(dtype=torch.float16)
378
+ else:
379
+ image = latents
380
+
381
+ if output_type != "latent":
382
+ # apply watermark if available
383
+ if self.watermark is not None:
384
+ image = self.watermark.apply_watermark(image)
385
+
386
+ image = self.image_processor.postprocess(image, output_type=output_type)
387
+
388
+ # Offload all models
389
+ self.maybe_free_model_hooks()
390
+
391
+ if not return_dict:
392
+ return (image,)
393
+
394
+ return StableDiffusionXLPipelineOutput(images=image)
ip_adapter/ip_adapter.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .utils import is_torch2_available
12
+
13
+ if is_torch2_available():
14
+ from .attention_processor import (
15
+ AttnProcessor2_0 as AttnProcessor,
16
+ )
17
+ from .attention_processor import (
18
+ CNAttnProcessor2_0 as CNAttnProcessor,
19
+ )
20
+ from .attention_processor import (
21
+ IPAttnProcessor2_0 as IPAttnProcessor,
22
+ )
23
+ else:
24
+ from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
25
+ from .resampler import Resampler
26
+
27
+
28
+ class ImageProjModel(torch.nn.Module):
29
+ """Projection Model"""
30
+
31
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
32
+ super().__init__()
33
+
34
+ self.cross_attention_dim = cross_attention_dim
35
+ self.clip_extra_context_tokens = clip_extra_context_tokens
36
+ self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
37
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
38
+
39
+ def forward(self, image_embeds):
40
+ embeds = image_embeds
41
+ clip_extra_context_tokens = self.proj(embeds).reshape(
42
+ -1, self.clip_extra_context_tokens, self.cross_attention_dim
43
+ )
44
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
45
+ return clip_extra_context_tokens
46
+
47
+
48
+ class MLPProjModel(torch.nn.Module):
49
+ """SD model with image prompt"""
50
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
51
+ super().__init__()
52
+
53
+ self.proj = torch.nn.Sequential(
54
+ torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
55
+ torch.nn.GELU(),
56
+ torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
57
+ torch.nn.LayerNorm(cross_attention_dim)
58
+ )
59
+
60
+ def forward(self, image_embeds):
61
+ clip_extra_context_tokens = self.proj(image_embeds)
62
+ return clip_extra_context_tokens
63
+
64
+
65
+ class IPAdapter:
66
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
67
+ self.device = device
68
+ self.image_encoder_path = image_encoder_path
69
+ self.ip_ckpt = ip_ckpt
70
+ self.num_tokens = num_tokens
71
+
72
+ self.pipe = sd_pipe.to(self.device)
73
+ self.set_ip_adapter()
74
+
75
+ # load image encoder
76
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
77
+ self.device, dtype=torch.float16
78
+ )
79
+ self.clip_image_processor = CLIPImageProcessor()
80
+ # image proj model
81
+ self.image_proj_model = self.init_proj()
82
+
83
+ self.load_ip_adapter()
84
+
85
+ def init_proj(self):
86
+ image_proj_model = ImageProjModel(
87
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
88
+ clip_embeddings_dim=self.image_encoder.config.projection_dim,
89
+ clip_extra_context_tokens=self.num_tokens,
90
+ ).to(self.device, dtype=torch.float16)
91
+ return image_proj_model
92
+
93
+ def set_ip_adapter(self):
94
+ unet = self.pipe.unet
95
+ attn_procs = {}
96
+ for name in unet.attn_processors.keys():
97
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
98
+ if name.startswith("mid_block"):
99
+ hidden_size = unet.config.block_out_channels[-1]
100
+ elif name.startswith("up_blocks"):
101
+ block_id = int(name[len("up_blocks.")])
102
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
103
+ elif name.startswith("down_blocks"):
104
+ block_id = int(name[len("down_blocks.")])
105
+ hidden_size = unet.config.block_out_channels[block_id]
106
+ if cross_attention_dim is None:
107
+ attn_procs[name] = AttnProcessor()
108
+ else:
109
+ attn_procs[name] = IPAttnProcessor(
110
+ hidden_size=hidden_size,
111
+ cross_attention_dim=cross_attention_dim,
112
+ scale=1.0,
113
+ num_tokens=self.num_tokens,
114
+ ).to(self.device, dtype=torch.float16)
115
+ unet.set_attn_processor(attn_procs)
116
+ if hasattr(self.pipe, "controlnet"):
117
+ if isinstance(self.pipe.controlnet, MultiControlNetModel):
118
+ for controlnet in self.pipe.controlnet.nets:
119
+ controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
120
+ else:
121
+ self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
122
+
123
+ def load_ip_adapter(self):
124
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
125
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
126
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
127
+ for key in f.keys():
128
+ if key.startswith("image_proj."):
129
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
130
+ elif key.startswith("ip_adapter."):
131
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
132
+ else:
133
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
134
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
135
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
136
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
137
+
138
+ @torch.inference_mode()
139
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
140
+ if pil_image is not None:
141
+ if isinstance(pil_image, Image.Image):
142
+ pil_image = [pil_image]
143
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
144
+ clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
145
+ else:
146
+ clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
147
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
148
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
149
+ return image_prompt_embeds, uncond_image_prompt_embeds
150
+
151
+ def set_scale(self, scale):
152
+ for attn_processor in self.pipe.unet.attn_processors.values():
153
+ if isinstance(attn_processor, IPAttnProcessor):
154
+ attn_processor.scale = scale
155
+
156
+ def generate(
157
+ self,
158
+ pil_image=None,
159
+ clip_image_embeds=None,
160
+ prompt=None,
161
+ negative_prompt=None,
162
+ scale=1.0,
163
+ num_samples=4,
164
+ seed=None,
165
+ guidance_scale=7.5,
166
+ num_inference_steps=30,
167
+ **kwargs,
168
+ ):
169
+ self.set_scale(scale)
170
+
171
+ if pil_image is not None:
172
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
173
+ else:
174
+ num_prompts = clip_image_embeds.size(0)
175
+
176
+ if prompt is None:
177
+ prompt = "best quality, high quality"
178
+ if negative_prompt is None:
179
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
180
+
181
+ if not isinstance(prompt, List):
182
+ prompt = [prompt] * num_prompts
183
+ if not isinstance(negative_prompt, List):
184
+ negative_prompt = [negative_prompt] * num_prompts
185
+
186
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
187
+ pil_image=pil_image, clip_image_embeds=clip_image_embeds
188
+ )
189
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
190
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
191
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
192
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
193
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
194
+
195
+ with torch.inference_mode():
196
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
197
+ prompt,
198
+ device=self.device,
199
+ num_images_per_prompt=num_samples,
200
+ do_classifier_free_guidance=True,
201
+ negative_prompt=negative_prompt,
202
+ )
203
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
204
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
205
+
206
+ generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
207
+ images = self.pipe(
208
+ prompt_embeds=prompt_embeds,
209
+ negative_prompt_embeds=negative_prompt_embeds,
210
+ guidance_scale=guidance_scale,
211
+ num_inference_steps=num_inference_steps,
212
+ generator=generator,
213
+ **kwargs,
214
+ ).images
215
+
216
+ return images
217
+
218
+
219
+ class IPAdapterXL(IPAdapter):
220
+ """SDXL"""
221
+
222
+ def generate(
223
+ self,
224
+ pil_image,
225
+ prompt=None,
226
+ negative_prompt=None,
227
+ scale=1.0,
228
+ num_samples=4,
229
+ seed=None,
230
+ num_inference_steps=30,
231
+ **kwargs,
232
+ ):
233
+ self.set_scale(scale)
234
+
235
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
236
+
237
+ if prompt is None:
238
+ prompt = "best quality, high quality"
239
+ if negative_prompt is None:
240
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
241
+
242
+ if not isinstance(prompt, List):
243
+ prompt = [prompt] * num_prompts
244
+ if not isinstance(negative_prompt, List):
245
+ negative_prompt = [negative_prompt] * num_prompts
246
+
247
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
248
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
249
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
250
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
251
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
252
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
253
+
254
+ with torch.inference_mode():
255
+ (
256
+ prompt_embeds,
257
+ negative_prompt_embeds,
258
+ pooled_prompt_embeds,
259
+ negative_pooled_prompt_embeds,
260
+ ) = self.pipe.encode_prompt(
261
+ prompt,
262
+ num_images_per_prompt=num_samples,
263
+ do_classifier_free_guidance=True,
264
+ negative_prompt=negative_prompt,
265
+ )
266
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
267
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
268
+
269
+ generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
270
+ images = self.pipe(
271
+ prompt_embeds=prompt_embeds,
272
+ negative_prompt_embeds=negative_prompt_embeds,
273
+ pooled_prompt_embeds=pooled_prompt_embeds,
274
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
275
+ num_inference_steps=num_inference_steps,
276
+ generator=generator,
277
+ **kwargs,
278
+ ).images
279
+
280
+ return images
281
+
282
+
283
+ class IPAdapterPlus(IPAdapter):
284
+ """IP-Adapter with fine-grained features"""
285
+
286
+ def init_proj(self):
287
+ image_proj_model = Resampler(
288
+ dim=self.pipe.unet.config.cross_attention_dim,
289
+ depth=4,
290
+ dim_head=64,
291
+ heads=12,
292
+ num_queries=self.num_tokens,
293
+ embedding_dim=self.image_encoder.config.hidden_size,
294
+ output_dim=self.pipe.unet.config.cross_attention_dim,
295
+ ff_mult=4,
296
+ ).to(self.device, dtype=torch.float16)
297
+ return image_proj_model
298
+
299
+ @torch.inference_mode()
300
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
301
+ if isinstance(pil_image, Image.Image):
302
+ pil_image = [pil_image]
303
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
304
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
305
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
306
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
307
+ uncond_clip_image_embeds = self.image_encoder(
308
+ torch.zeros_like(clip_image), output_hidden_states=True
309
+ ).hidden_states[-2]
310
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
311
+ return image_prompt_embeds, uncond_image_prompt_embeds
312
+
313
+
314
+ class IPAdapterFull(IPAdapterPlus):
315
+ """IP-Adapter with full features"""
316
+
317
+ def init_proj(self):
318
+ image_proj_model = MLPProjModel(
319
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
320
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
321
+ ).to(self.device, dtype=torch.float16)
322
+ return image_proj_model
323
+
324
+
325
+ class IPAdapterPlusXL(IPAdapter):
326
+ """SDXL"""
327
+
328
+ def init_proj(self):
329
+ image_proj_model = Resampler(
330
+ dim=1280,
331
+ depth=4,
332
+ dim_head=64,
333
+ heads=20,
334
+ num_queries=self.num_tokens,
335
+ embedding_dim=self.image_encoder.config.hidden_size,
336
+ output_dim=self.pipe.unet.config.cross_attention_dim,
337
+ ff_mult=4,
338
+ ).to(self.device, dtype=torch.float16)
339
+ return image_proj_model
340
+
341
+ @torch.inference_mode()
342
+ def get_image_embeds(self, pil_image):
343
+ if isinstance(pil_image, Image.Image):
344
+ pil_image = [pil_image]
345
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
346
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
347
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
348
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
349
+ uncond_clip_image_embeds = self.image_encoder(
350
+ torch.zeros_like(clip_image), output_hidden_states=True
351
+ ).hidden_states[-2]
352
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
353
+ return image_prompt_embeds, uncond_image_prompt_embeds
354
+
355
+ def generate(
356
+ self,
357
+ pil_image,
358
+ prompt=None,
359
+ negative_prompt=None,
360
+ scale=1.0,
361
+ num_samples=4,
362
+ seed=None,
363
+ num_inference_steps=30,
364
+ **kwargs,
365
+ ):
366
+ self.set_scale(scale)
367
+
368
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
369
+
370
+ if prompt is None:
371
+ prompt = "best quality, high quality"
372
+ if negative_prompt is None:
373
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
374
+
375
+ if not isinstance(prompt, List):
376
+ prompt = [prompt] * num_prompts
377
+ if not isinstance(negative_prompt, List):
378
+ negative_prompt = [negative_prompt] * num_prompts
379
+
380
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
381
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
382
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
383
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
384
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
385
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
386
+
387
+ with torch.inference_mode():
388
+ (
389
+ prompt_embeds,
390
+ negative_prompt_embeds,
391
+ pooled_prompt_embeds,
392
+ negative_pooled_prompt_embeds,
393
+ ) = self.pipe.encode_prompt(
394
+ prompt,
395
+ num_images_per_prompt=num_samples,
396
+ do_classifier_free_guidance=True,
397
+ negative_prompt=negative_prompt,
398
+ )
399
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
400
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
401
+
402
+ generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
403
+ images = self.pipe(
404
+ prompt_embeds=prompt_embeds,
405
+ negative_prompt_embeds=negative_prompt_embeds,
406
+ pooled_prompt_embeds=pooled_prompt_embeds,
407
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
408
+ num_inference_steps=num_inference_steps,
409
+ generator=generator,
410
+ **kwargs,
411
+ ).images
412
+
413
+ return images
ip_adapter/ip_adapter_faceid.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
12
+
13
+
14
+ class MLPProjModel(torch.nn.Module):
15
+ """SD model with image prompt"""
16
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
17
+ super().__init__()
18
+
19
+ self.cross_attention_dim = cross_attention_dim
20
+ self.num_tokens = num_tokens
21
+
22
+ self.proj = torch.nn.Sequential(
23
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
24
+ torch.nn.GELU(),
25
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
26
+ )
27
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
28
+
29
+ def forward(self, id_embeds):
30
+ x = self.proj(id_embeds)
31
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
32
+ x = self.norm(x)
33
+ return x
34
+
35
+
36
+ class IPAdapterFaceID:
37
+ def __init__(self, sd_pipe, ip_ckpt, device, lora_rank=128, num_tokens=4):
38
+ self.device = device
39
+ self.ip_ckpt = ip_ckpt
40
+ self.lora_rank = lora_rank
41
+ self.num_tokens = num_tokens
42
+
43
+ self.pipe = sd_pipe.to(self.device)
44
+ self.set_ip_adapter()
45
+
46
+ # image proj model
47
+ self.image_proj_model = self.init_proj()
48
+
49
+ self.load_ip_adapter()
50
+
51
+ def init_proj(self):
52
+ image_proj_model = MLPProjModel(
53
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
54
+ id_embeddings_dim=512,
55
+ num_tokens=self.num_tokens,
56
+ ).to(self.device, dtype=torch.float16)
57
+ return image_proj_model
58
+
59
+ def set_ip_adapter(self):
60
+ unet = self.pipe.unet
61
+ attn_procs = {}
62
+ for name in unet.attn_processors.keys():
63
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
64
+ if name.startswith("mid_block"):
65
+ hidden_size = unet.config.block_out_channels[-1]
66
+ elif name.startswith("up_blocks"):
67
+ block_id = int(name[len("up_blocks.")])
68
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
69
+ elif name.startswith("down_blocks"):
70
+ block_id = int(name[len("down_blocks.")])
71
+ hidden_size = unet.config.block_out_channels[block_id]
72
+ if cross_attention_dim is None:
73
+ attn_procs[name] = LoRAAttnProcessor(
74
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
75
+ ).to(self.device, dtype=torch.float16)
76
+ else:
77
+ attn_procs[name] = LoRAIPAttnProcessor(
78
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
79
+ ).to(self.device, dtype=torch.float16)
80
+ unet.set_attn_processor(attn_procs)
81
+
82
+ def load_ip_adapter(self):
83
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
84
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
85
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
86
+ for key in f.keys():
87
+ if key.startswith("image_proj."):
88
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
89
+ elif key.startswith("ip_adapter."):
90
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
91
+ else:
92
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
93
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
94
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
95
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
96
+
97
+ @torch.inference_mode()
98
+ def get_image_embeds(self, faceid_embeds):
99
+
100
+ faceid_embeds = faceid_embeds.to(self.device, dtype=torch.float16)
101
+ image_prompt_embeds = self.image_proj_model(faceid_embeds)
102
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
103
+ return image_prompt_embeds, uncond_image_prompt_embeds
104
+
105
+ def set_scale(self, scale):
106
+ for attn_processor in self.pipe.unet.attn_processors.values():
107
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
108
+ attn_processor.scale = scale
109
+
110
+ def generate(
111
+ self,
112
+ faceid_embeds=None,
113
+ prompt=None,
114
+ negative_prompt=None,
115
+ scale=1.0,
116
+ num_samples=4,
117
+ seed=None,
118
+ guidance_scale=7.5,
119
+ num_inference_steps=30,
120
+ **kwargs,
121
+ ):
122
+ self.set_scale(scale)
123
+
124
+
125
+ num_prompts = faceid_embeds.size(0)
126
+
127
+ if prompt is None:
128
+ prompt = "best quality, high quality"
129
+ if negative_prompt is None:
130
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
131
+
132
+ if not isinstance(prompt, List):
133
+ prompt = [prompt] * num_prompts
134
+ if not isinstance(negative_prompt, List):
135
+ negative_prompt = [negative_prompt] * num_prompts
136
+
137
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
138
+
139
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
140
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
141
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
142
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
143
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
144
+
145
+ with torch.inference_mode():
146
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
147
+ prompt,
148
+ device=self.device,
149
+ num_images_per_prompt=num_samples,
150
+ do_classifier_free_guidance=True,
151
+ negative_prompt=negative_prompt,
152
+ )
153
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
154
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
155
+
156
+ generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
157
+ images = self.pipe(
158
+ prompt_embeds=prompt_embeds,
159
+ negative_prompt_embeds=negative_prompt_embeds,
160
+ guidance_scale=guidance_scale,
161
+ num_inference_steps=num_inference_steps,
162
+ generator=generator,
163
+ **kwargs,
164
+ ).images
165
+
166
+ return images
ip_adapter/resampler.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2
+ # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3
+
4
+ import math
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange
9
+ from einops.layers.torch import Rearrange
10
+
11
+
12
+ # FFN
13
+ def FeedForward(dim, mult=4):
14
+ inner_dim = int(dim * mult)
15
+ return nn.Sequential(
16
+ nn.LayerNorm(dim),
17
+ nn.Linear(dim, inner_dim, bias=False),
18
+ nn.GELU(),
19
+ nn.Linear(inner_dim, dim, bias=False),
20
+ )
21
+
22
+
23
+ def reshape_tensor(x, heads):
24
+ bs, length, width = x.shape
25
+ # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
26
+ x = x.view(bs, length, heads, -1)
27
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
28
+ x = x.transpose(1, 2)
29
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
30
+ x = x.reshape(bs, heads, length, -1)
31
+ return x
32
+
33
+
34
+ class PerceiverAttention(nn.Module):
35
+ def __init__(self, *, dim, dim_head=64, heads=8):
36
+ super().__init__()
37
+ self.scale = dim_head**-0.5
38
+ self.dim_head = dim_head
39
+ self.heads = heads
40
+ inner_dim = dim_head * heads
41
+
42
+ self.norm1 = nn.LayerNorm(dim)
43
+ self.norm2 = nn.LayerNorm(dim)
44
+
45
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
46
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
47
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
48
+
49
+ def forward(self, x, latents):
50
+ """
51
+ Args:
52
+ x (torch.Tensor): image features
53
+ shape (b, n1, D)
54
+ latent (torch.Tensor): latent features
55
+ shape (b, n2, D)
56
+ """
57
+ x = self.norm1(x)
58
+ latents = self.norm2(latents)
59
+
60
+ b, l, _ = latents.shape
61
+
62
+ q = self.to_q(latents)
63
+ kv_input = torch.cat((x, latents), dim=-2)
64
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
65
+
66
+ q = reshape_tensor(q, self.heads)
67
+ k = reshape_tensor(k, self.heads)
68
+ v = reshape_tensor(v, self.heads)
69
+
70
+ # attention
71
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
72
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
73
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
74
+ out = weight @ v
75
+
76
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
77
+
78
+ return self.to_out(out)
79
+
80
+
81
+ class Resampler(nn.Module):
82
+ def __init__(
83
+ self,
84
+ dim=1024,
85
+ depth=8,
86
+ dim_head=64,
87
+ heads=16,
88
+ num_queries=8,
89
+ embedding_dim=768,
90
+ output_dim=1024,
91
+ ff_mult=4,
92
+ max_seq_len: int = 257, # CLIP tokens + CLS token
93
+ apply_pos_emb: bool = False,
94
+ num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
95
+ ):
96
+ super().__init__()
97
+ self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
98
+
99
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
100
+
101
+ self.proj_in = nn.Linear(embedding_dim, dim)
102
+
103
+ self.proj_out = nn.Linear(dim, output_dim)
104
+ self.norm_out = nn.LayerNorm(output_dim)
105
+
106
+ self.to_latents_from_mean_pooled_seq = (
107
+ nn.Sequential(
108
+ nn.LayerNorm(dim),
109
+ nn.Linear(dim, dim * num_latents_mean_pooled),
110
+ Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
111
+ )
112
+ if num_latents_mean_pooled > 0
113
+ else None
114
+ )
115
+
116
+ self.layers = nn.ModuleList([])
117
+ for _ in range(depth):
118
+ self.layers.append(
119
+ nn.ModuleList(
120
+ [
121
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
122
+ FeedForward(dim=dim, mult=ff_mult),
123
+ ]
124
+ )
125
+ )
126
+
127
+ def forward(self, x):
128
+ if self.pos_emb is not None:
129
+ n, device = x.shape[1], x.device
130
+ pos_emb = self.pos_emb(torch.arange(n, device=device))
131
+ x = x + pos_emb
132
+
133
+ latents = self.latents.repeat(x.size(0), 1, 1)
134
+
135
+ x = self.proj_in(x)
136
+
137
+ if self.to_latents_from_mean_pooled_seq:
138
+ meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
139
+ meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
140
+ latents = torch.cat((meanpooled_latents, latents), dim=-2)
141
+
142
+ for attn, ff in self.layers:
143
+ latents = attn(x, latents) + latents
144
+ latents = ff(latents) + latents
145
+
146
+ latents = self.proj_out(latents)
147
+ return self.norm_out(latents)
148
+
149
+
150
+ def masked_mean(t, *, dim, mask=None):
151
+ if mask is None:
152
+ return t.mean(dim=dim)
153
+
154
+ denom = mask.sum(dim=dim, keepdim=True)
155
+ mask = rearrange(mask, "b n -> b n 1")
156
+ masked_t = t.masked_fill(~mask, 0.0)
157
+
158
+ return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
ip_adapter/test_resampler.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from resampler import Resampler
3
+ from transformers import CLIPVisionModel
4
+
5
+ BATCH_SIZE = 2
6
+ OUTPUT_DIM = 1280
7
+ NUM_QUERIES = 8
8
+ NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
9
+ APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
10
+ IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
11
+
12
+
13
+ def main():
14
+ image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
15
+ embedding_dim = image_encoder.config.hidden_size
16
+ print(f"image_encoder hidden size: ", embedding_dim)
17
+
18
+ image_proj_model = Resampler(
19
+ dim=1024,
20
+ depth=2,
21
+ dim_head=64,
22
+ heads=16,
23
+ num_queries=NUM_QUERIES,
24
+ embedding_dim=embedding_dim,
25
+ output_dim=OUTPUT_DIM,
26
+ ff_mult=2,
27
+ max_seq_len=257,
28
+ apply_pos_emb=APPLY_POS_EMB,
29
+ num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
30
+ )
31
+
32
+ dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
33
+ with torch.no_grad():
34
+ image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
35
+ print("image_embds shape: ", image_embeds.shape)
36
+
37
+ with torch.no_grad():
38
+ ip_tokens = image_proj_model(image_embeds)
39
+ print("ip_tokens shape:", ip_tokens.shape)
40
+ assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
41
+
42
+
43
+ if __name__ == "__main__":
44
+ main()
ip_adapter/utils.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import torch.nn.functional as F
2
+
3
+
4
+ def is_torch2_available():
5
+ return hasattr(F, "scaled_dot_product_attention")