HiDiffusion / app.py
multimodalart's picture
Update app.py
5bed75e verified
from hidiffusion import apply_hidiffusion, remove_hidiffusion
from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL
import gradio as gr
import torch
import spaces
model = "stabilityai/stable-diffusion-xl-base-1.0"
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
model_15 = "runwayml/stable-diffusion-v1-5"
scheduler_15 = DDIMScheduler.from_pretrained(model_15, subfolder="scheduler")
pipe_15 = DiffusionPipeline.from_pretrained(model_15, vae=vae, scheduler=scheduler_15, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
#pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
@spaces.GPU
def run_hidiffusion(prompt, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
apply_hidiffusion(pipe)
return pipe(prompt, guidance_scale=7.5, height=2048, width=2048, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]
@spaces.GPU
def run_hidiffusion_15(prompt, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
apply_hidiffusion(pipe_15)
return pipe_15(prompt, guidance_scale=7.5, height=1024, width=1024, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]
with gr.Blocks() as demo:
gr.Markdown("# HiDiffusion Demo")
gr.Markdown("Make diffusion models generate higher resolution images with Resolution-Aware U-Net & Multi-head Self-Attention. [Paper](https://huggingface.co/papers/2311.17528) | [Code](https://github.com/megvii-research/HiDiffusion)")
with gr.Tab("SDXL in 2048x2048"):
with gr.Row():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
btn = gr.Button("Run")
with gr.Tab("SD1.5 in 1024x1024"):
with gr.Row():
prompt_15 = gr.Textbox(label="Prompt")
negative_prompt_15 = gr.Textbox(label="Negative Prompt")
btn_15 = gr.Button("Run")
output = gr.Image(label="Result")
gr.Examples(examples=[
"Echoes of a forgotten song drift across the moonlit sea, where a ghost ship sails, its spectral crew bound to an eternal quest for redemption.",
"Roger rabbit as a real person, photorealistic, cinematic.",
"tanding tall amidst the ruins, a stone golem awakens, vines and flowers sprouting from the crevices in its body."
], inputs=[prompt], outputs=[output], fn=run_hidiffusion)
btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output])
btn_15.click(fn=run_hidiffusion, inputs=[prompt_15, negative_prompt_15], outputs=[output])
demo.launch()