Spaces:
Runtime error
Runtime error
from hidiffusion import apply_hidiffusion, remove_hidiffusion | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from transformers import CLIPFeatureExtractor | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
import gradio as gr | |
import torch | |
import spaces | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") | |
#safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"), | |
#feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") | |
pretrain_model = "SG161222/Realistic_Vision_V5.1_noVAE" | |
scheduler = DDIMScheduler.from_pretrained(pretrain_model, subfolder="scheduler") | |
pipe = StableDiffusionPipeline.from_pretrained(pretrain_model, scheduler = scheduler, vae=vae, torch_dtype=torch.float16).to("cuda") | |
# # Optional. enable_xformers_memory_efficient_attention can save memory usage and increase inference speed. enable_model_cpu_offload and enable_vae_tiling can save memory usage. | |
#pipe.enable_model_cpu_offload() | |
#pipe.enable_vae_tiling() | |
# Apply hidiffusion with a single line of code. | |
apply_hidiffusion(pipe) | |
def run_hidiffusion(prompt, negative_prompt): | |
return pipe(prompt, guidance_scale=7.5, height=1024, width=1024, eta=1.0, negative_prompt=negative_prompt).images[0] | |
with gr.Blocks() as demo: | |
prompt = gr.Textbox() | |
negative_prompt = gr.Textbox() | |
btn = gr.Button("Run") | |
output = gr.Image() | |
btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output]) | |
demo.launch() |