EchoMimic-zero / webgui.py
multimodalart's picture
Update webgui.py
0da968d verified
raw
history blame
21.3 kB
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''
import spaces
import os
os.system('pip install scikit-image')
os.system('pip install IPython')
import random
from datetime import datetime
from pathlib import Path
import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
import argparse
import gradio as gr
import huggingface_hub
import pickle
from src.utils.draw_utils import FaceMeshVisualizer
from src.utils.motion_utils import motion_sync
from src.utils.mp_utils import LMKExtractor
huggingface_hub.snapshot_download(
repo_id='BadToBest/EchoMimic',
local_dir='./pretrained_weights',
local_dir_use_symlinks=False,
)
is_shared_ui = True if "fffiloni/EchoMimic" in os.environ['SPACE_ID'] else False
available_property = False if is_shared_ui else True
advanced_settings_label = "Advanced Configuration (only for duplicated spaces)" if is_shared_ui else "Advanced Configuration"
default_values = {
"width": 512,
"height": 512,
"length": 1200,
"seed": 420,
"facemask_dilation_ratio": 0.1,
"facecrop_dilation_ratio": 0.5,
"context_frames": 12,
"context_overlap": 3,
"cfg": 2.5,
"steps": 30,
"sample_rate": 16000,
"fps": 24,
"device": "cuda"
}
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
config_path = "./configs/prompts/animation.yaml"
config = OmegaConf.load(config_path)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = "cuda"
if not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))
## denoising net init
if os.path.exists(config.motion_module_path):
### stage1 + stage2
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
else:
### only stage1
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
}
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)
## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to("cuda", dtype=weight_dtype)
face_locator.load_state_dict(torch.load(config.face_locator_path, map_location='cpu'))
## load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
## load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device="cpu")
############# model_init finished #############
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = Audio2VideoPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
face_locator=face_locator,
scheduler=scheduler,
).to("cuda", dtype=weight_dtype)
def select_face(det_bboxes, probs):
## max face from faces that the prob is above 0.8
## box: xyxy
if det_bboxes is None or probs is None:
return None
filtered_bboxes = []
for bbox_i in range(len(det_bboxes)):
if probs[bbox_i] > 0.8:
filtered_bboxes.append(det_bboxes[bbox_i])
if len(filtered_bboxes) == 0:
return None
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
return sorted_bboxes[0]
lmk_extractor = LMKExtractor()
def face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height):
face_img = cv2.imread(uploaded_img)
if face_img is None:
raise gr.Error("input image should be uploaded or selected.")
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
det_bboxes, probs = face_detector.detect(face_img)
select_bbox = select_face(det_bboxes, probs)
if select_bbox is None:
face_mask[:, :] = 255
else:
xyxy = select_bbox[:4]
xyxy = np.round(xyxy).astype('int')
rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
r_pad = int((re - rb) * facemask_dilation_ratio)
c_pad = int((ce - cb) * facemask_dilation_ratio)
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
face_img = crop_and_pad(face_img, crop_rect)
face_mask = crop_and_pad(face_mask, crop_rect)
face_img = cv2.resize(face_img, (width, height))
face_mask = cv2.resize(face_mask, (width, height))
print('face detect done.')
return face_img, face_mask
@spaces.GPU(duration=200)
def video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
video = pipe(
ref_image_pil,
uploaded_audio,
face_mask_tensor,
width,
height,
length,
steps,
cfg,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap
).videos
print('video pipe done.')
save_dir = Path("output/tmp")
save_dir.mkdir(exist_ok=True, parents=True)
output_video_path = save_dir / "output_video.mp4"
save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
video_clip = VideoFileClip(str(output_video_path))
audio_clip = AudioFileClip(uploaded_audio)
final_output_path = save_dir / "output_video_with_audio.mp4"
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
return final_output_path
def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
face_img, face_mask = face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height)
final_output_path = video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device)
return final_output_path
# @spaces.GPU
# def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
# #### face musk prepare
# face_img = cv2.imread(uploaded_img)
# if face_img is None:
# raise gr.Error("input image should be uploaded or selected.")
# face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
# det_bboxes, probs = face_detector.detect(face_img)
# select_bbox = select_face(det_bboxes, probs)
# if select_bbox is None:
# face_mask[:, :] = 255
# else:
# xyxy = select_bbox[:4]
# xyxy = np.round(xyxy).astype('int')
# rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
# r_pad = int((re - rb) * facemask_dilation_ratio)
# c_pad = int((ce - cb) * facemask_dilation_ratio)
# face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
# #### face crop
# r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
# c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
# crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
# face_img = crop_and_pad(face_img, crop_rect)
# face_mask = crop_and_pad(face_mask, crop_rect)
# face_img = cv2.resize(face_img, (width, height))
# face_mask = cv2.resize(face_mask, (width, height))
# print('face detect done.')
# # ==================== face_locator =====================
# '''
# driver_video = "./assets/driven_videos/c.mp4"
# input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), (512, 512)) for i in pils_from_video(driver_video)]
# ref_det = lmk_extractor(face_img)
# visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)
# pose_list = []
# sequence_driver_det = []
# try:
# for frame in input_frames_cv2:
# result = lmk_extractor(frame)
# assert result is not None, "{}, bad video, face not detected".format(driver_video)
# sequence_driver_det.append(result)
# except:
# print("face detection failed")
# exit()
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
# for p in sequence_det_ms:
# tgt_musk = visualizer.draw_landmarks((width, height), p)
# tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
# pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
# '''
# # face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
# face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
# ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
# #del pose_list, sequence_det_ms, sequence_driver_det, input_frames_cv2
# video = pipe(
# ref_image_pil,
# uploaded_audio,
# face_mask_tensor,
# width,
# height,
# length,
# steps,
# cfg,
# #generator=generator,
# audio_sample_rate=sample_rate,
# context_frames=context_frames,
# fps=fps,
# context_overlap=context_overlap
# ).videos
# print('video pipe done.')
# save_dir = Path("output/tmp")
# save_dir.mkdir(exist_ok=True, parents=True)
# output_video_path = save_dir / "output_video.mp4"
# save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
# video_clip = VideoFileClip(str(output_video_path))
# audio_clip = AudioFileClip(uploaded_audio)
# final_output_path = save_dir / "output_video_with_audio.mp4"
# video_clip = video_clip.set_audio(audio_clip)
# video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
# return final_output_path
with gr.Blocks() as demo:
gr.Markdown('# EchoMimic')
gr.Markdown('## Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning')
gr.Markdown('Inference time: from ~7mins/240frames to ~50s/240frames on V100 GPU')
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://badtobest.github.io/echomimic.html'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://huggingface.co/BadToBest/EchoMimic'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
<a href='https://arxiv.org/abs/2407.08136'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
</div>
""")
with gr.Row():
with gr.Column(min_width=250):
uploaded_img = gr.Image(type="filepath", label="Reference Image")
with gr.Column(min_width=250):
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
with gr.Accordion(label=advanced_settings_label, open=False):
with gr.Row():
width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"], interactive=available_property)
height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"], interactive=available_property)
with gr.Row():
length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"], interactive=available_property)
seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"], interactive=available_property)
with gr.Row():
facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"], interactive=available_property)
facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"], interactive=available_property)
with gr.Row():
context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"], interactive=available_property)
context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"], interactive=available_property)
with gr.Row():
cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"], interactive=available_property)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"], interactive=available_property)
with gr.Row():
sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"], interactive=available_property)
fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"], interactive=available_property)
device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"], interactive=available_property)
with gr.Column(min_width=250):
generate_button = gr.Button("Generate Video")
output_video = gr.Video()
with gr.Row():
gr.Examples(
label = "Portrait examples",
examples = [
['assets/test_imgs/a.png'],
['assets/test_imgs/b.png'],
['assets/test_imgs/c.png'],
['assets/test_imgs/d.png'],
['assets/test_imgs/e.png']
],
inputs = [uploaded_img]
)
gr.Examples(
label = "Audio examples",
examples = [
['assets/test_audios/chunnuanhuakai.wav'],
['assets/test_audios/chunwang.wav'],
['assets/test_audios/echomimic_en_girl.wav'],
['assets/test_audios/echomimic_en.wav'],
['assets/test_audios/echomimic_girl.wav'],
['assets/test_audios/echomimic.wav'],
['assets/test_audios/jane.wav'],
['assets/test_audios/mei.wav'],
['assets/test_audios/walden.wav'],
['assets/test_audios/yun.wav'],
],
inputs = [uploaded_audio]
)
# gr.HTML("""
# <div style="display:flex;column-gap:4px;">
# <a href="https://huggingface.co/spaces/fffiloni/EchoMimic?duplicate=true">
# <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space">
# </a>
# <a href="https://huggingface.co/fffiloni">
# <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl-dark.svg" alt="Follow me on HF">
# </a>
# </div>
# """)
# def generate_video(uploaded_img, uploaded_audio, facemask_dilation_ratio=default_values["facemask_dilation_ratio"],
# facecrop_dilation_ratio=default_values["facecrop_dilation_ratio"],
# context_frames=default_values["context_frames"],
# context_overlap=default_values["context_overlap"],
# cfg=default_values["cfg"],
# steps=default_values["steps"],
# sample_rate=default_values["sample_rate"],
# fps=default_values["fps"],
# device=default_values["device"],
# width=default_values["width"],
# height=default_values["height"],
# length=default_values["length"] ):
# final_output_path = process_video(
# uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
# )
# output_video= final_output_path
# return final_output_path
# generate_button.click(
# generate_video,
# inputs=[
# uploaded_img,
# uploaded_audio,
# # width,
# # height,
# # length,
# # seed,
# # facemask_dilation_ratio,
# # facecrop_dilation_ratio,
# # context_frames,
# # context_overlap,
# # cfg,
# # steps,
# # sample_rate,
# # fps,
# # device
# ],
# outputs=output_video,
# show_api=False
# )
def generate_video(uploaded_img, uploaded_audio,
facemask_dilation_ratio=default_values["facemask_dilation_ratio"],
facecrop_dilation_ratio=default_values["facecrop_dilation_ratio"],
context_frames=default_values["context_frames"],
context_overlap=default_values["context_overlap"],
cfg=default_values["cfg"],
steps=default_values["steps"],
sample_rate=default_values["sample_rate"],
fps=default_values["fps"],
device=default_values["device"],
width=default_values["width"],
height=default_values["height"],
length=default_values["length"] ):
final_output_path = process_video(
uploaded_img,
uploaded_audio, width, height,
length, facemask_dilation_ratio,
facecrop_dilation_ratio, context_frames,
context_overlap, cfg, steps,
sample_rate, fps, device
)
output_video = final_output_path
return final_output_path
generate_button.click(
generate_video,
inputs=[
uploaded_img,
uploaded_audio
],
outputs=output_video,
show_progress=True
)
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=7680, help='Server port')
args = parser.parse_args()
# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
if __name__ == '__main__':
demo.queue(max_size=3).launch(show_api=False, show_error=True)
#demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)