Spaces:
Runtime error
Runtime error
| import inspect | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
| from diffusers import ( | |
| AutoencoderKL, | |
| FlowMatchEulerDiscreteScheduler, | |
| SD3Transformer2DModel, | |
| StableDiffusion3PAGPipeline, | |
| StableDiffusion3Pipeline, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import ( | |
| PipelineTesterMixin, | |
| check_qkv_fusion_matches_attn_procs_length, | |
| check_qkv_fusion_processors_exist, | |
| ) | |
| class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = StableDiffusion3PAGPipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "height", | |
| "width", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| ) | |
| batch_params = frozenset(["prompt", "negative_prompt"]) | |
| test_xformers_attention = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = SD3Transformer2DModel( | |
| sample_size=32, | |
| patch_size=1, | |
| in_channels=4, | |
| num_layers=2, | |
| attention_head_dim=8, | |
| num_attention_heads=4, | |
| caption_projection_dim=32, | |
| joint_attention_dim=32, | |
| pooled_projection_dim=64, | |
| out_channels=4, | |
| ) | |
| clip_text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| sample_size=32, | |
| in_channels=3, | |
| out_channels=3, | |
| block_out_channels=(4,), | |
| layers_per_block=1, | |
| latent_channels=4, | |
| norm_num_groups=1, | |
| use_quant_conv=False, | |
| use_post_quant_conv=False, | |
| shift_factor=0.0609, | |
| scaling_factor=1.5035, | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| return { | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "text_encoder_3": text_encoder_3, | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "tokenizer_3": tokenizer_3, | |
| "transformer": transformer, | |
| "vae": vae, | |
| } | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| "pag_scale": 0.0, | |
| } | |
| return inputs | |
| def test_stable_diffusion_3_different_prompts(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_same_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt_2"] = "a different prompt" | |
| inputs["prompt_3"] = "another different prompt" | |
| output_different_prompts = pipe(**inputs).images[0] | |
| max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
| # Outputs should be different here | |
| assert max_diff > 1e-2 | |
| def test_stable_diffusion_3_different_negative_prompts(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_same_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt_2"] = "deformed" | |
| inputs["negative_prompt_3"] = "blurry" | |
| output_different_prompts = pipe(**inputs).images[0] | |
| max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
| # Outputs should be different here | |
| assert max_diff > 1e-2 | |
| def test_fused_qkv_projections(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| original_image_slice = image[0, -3:, -3:, -1] | |
| # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added | |
| # to the pipeline level. | |
| pipe.transformer.fuse_qkv_projections() | |
| assert check_qkv_fusion_processors_exist(pipe.transformer), ( | |
| "Something wrong with the fused attention processors. Expected all the attention processors to be fused." | |
| ) | |
| assert check_qkv_fusion_matches_attn_procs_length( | |
| pipe.transformer, pipe.transformer.original_attn_processors | |
| ), "Something wrong with the attention processors concerning the fused QKV projections." | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_fused = image[0, -3:, -3:, -1] | |
| pipe.transformer.unfuse_qkv_projections() | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_disabled = image[0, -3:, -3:, -1] | |
| assert np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3), ( | |
| "Fusion of QKV projections shouldn't affect the outputs." | |
| ) | |
| assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3), ( | |
| "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
| ) | |
| assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), ( | |
| "Original outputs should match when fused QKV projections are disabled." | |
| ) | |
| def test_pag_disable_enable(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| # base pipeline (expect same output when pag is disabled) | |
| pipe_sd = StableDiffusion3Pipeline(**components) | |
| pipe_sd = pipe_sd.to(device) | |
| pipe_sd.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| del inputs["pag_scale"] | |
| assert "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters, ( | |
| f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | |
| ) | |
| out = pipe_sd(**inputs).images[0, -3:, -3:, -1] | |
| components = self.get_dummy_components() | |
| # pag disabled with pag_scale=0.0 | |
| pipe_pag = self.pipeline_class(**components) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["pag_scale"] = 0.0 | |
| out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
| assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
| def test_pag_applied_layers(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| # base pipeline | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn" in k] | |
| original_attn_procs = pipe.transformer.attn_processors | |
| pag_layers = ["blocks.0", "blocks.1"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) | |
| # blocks.0 | |
| block_0_self_attn = ["transformer_blocks.0.attn.processor"] | |
| pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["blocks.0"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(block_0_self_attn) | |
| pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["blocks.0.attn"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(block_0_self_attn) | |
| pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["blocks.(0|1)"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert (len(pipe.pag_attn_processors)) == 2 | |
| pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["blocks.0", r"blocks\.1"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert len(pipe.pag_attn_processors) == 2 | |