Spaces:
Runtime error
Runtime error
| # Copyright 2025 Lightricks and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional | |
| import torch | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...models.modeling_utils import ModelMixin | |
| class ResBlock(torch.nn.Module): | |
| def __init__(self, channels: int, mid_channels: Optional[int] = None, dims: int = 3): | |
| super().__init__() | |
| if mid_channels is None: | |
| mid_channels = channels | |
| Conv = torch.nn.Conv2d if dims == 2 else torch.nn.Conv3d | |
| self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1) | |
| self.norm1 = torch.nn.GroupNorm(32, mid_channels) | |
| self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1) | |
| self.norm2 = torch.nn.GroupNorm(32, channels) | |
| self.activation = torch.nn.SiLU() | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| residual = hidden_states | |
| hidden_states = self.conv1(hidden_states) | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.activation(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| hidden_states = self.norm2(hidden_states) | |
| hidden_states = self.activation(hidden_states + residual) | |
| return hidden_states | |
| class PixelShuffleND(torch.nn.Module): | |
| def __init__(self, dims, upscale_factors=(2, 2, 2)): | |
| super().__init__() | |
| self.dims = dims | |
| self.upscale_factors = upscale_factors | |
| if dims not in [1, 2, 3]: | |
| raise ValueError("dims must be 1, 2, or 3") | |
| def forward(self, x): | |
| if self.dims == 3: | |
| # spatiotemporal: b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3) | |
| return ( | |
| x.unflatten(1, (-1, *self.upscale_factors[:3])) | |
| .permute(0, 1, 5, 2, 6, 3, 7, 4) | |
| .flatten(6, 7) | |
| .flatten(4, 5) | |
| .flatten(2, 3) | |
| ) | |
| elif self.dims == 2: | |
| # spatial: b (c p1 p2) h w -> b c (h p1) (w p2) | |
| return ( | |
| x.unflatten(1, (-1, *self.upscale_factors[:2])).permute(0, 1, 4, 2, 5, 3).flatten(4, 5).flatten(2, 3) | |
| ) | |
| elif self.dims == 1: | |
| # temporal: b (c p1) f h w -> b c (f p1) h w | |
| return x.unflatten(1, (-1, *self.upscale_factors[:1])).permute(0, 1, 3, 2, 4, 5).flatten(2, 3) | |
| class LTXLatentUpsamplerModel(ModelMixin, ConfigMixin): | |
| """ | |
| Model to spatially upsample VAE latents. | |
| Args: | |
| in_channels (`int`, defaults to `128`): | |
| Number of channels in the input latent | |
| mid_channels (`int`, defaults to `512`): | |
| Number of channels in the middle layers | |
| num_blocks_per_stage (`int`, defaults to `4`): | |
| Number of ResBlocks to use in each stage (pre/post upsampling) | |
| dims (`int`, defaults to `3`): | |
| Number of dimensions for convolutions (2 or 3) | |
| spatial_upsample (`bool`, defaults to `True`): | |
| Whether to spatially upsample the latent | |
| temporal_upsample (`bool`, defaults to `False`): | |
| Whether to temporally upsample the latent | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 128, | |
| mid_channels: int = 512, | |
| num_blocks_per_stage: int = 4, | |
| dims: int = 3, | |
| spatial_upsample: bool = True, | |
| temporal_upsample: bool = False, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.mid_channels = mid_channels | |
| self.num_blocks_per_stage = num_blocks_per_stage | |
| self.dims = dims | |
| self.spatial_upsample = spatial_upsample | |
| self.temporal_upsample = temporal_upsample | |
| ConvNd = torch.nn.Conv2d if dims == 2 else torch.nn.Conv3d | |
| self.initial_conv = ConvNd(in_channels, mid_channels, kernel_size=3, padding=1) | |
| self.initial_norm = torch.nn.GroupNorm(32, mid_channels) | |
| self.initial_activation = torch.nn.SiLU() | |
| self.res_blocks = torch.nn.ModuleList([ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]) | |
| if spatial_upsample and temporal_upsample: | |
| self.upsampler = torch.nn.Sequential( | |
| torch.nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1), | |
| PixelShuffleND(3), | |
| ) | |
| elif spatial_upsample: | |
| self.upsampler = torch.nn.Sequential( | |
| torch.nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1), | |
| PixelShuffleND(2), | |
| ) | |
| elif temporal_upsample: | |
| self.upsampler = torch.nn.Sequential( | |
| torch.nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1), | |
| PixelShuffleND(1), | |
| ) | |
| else: | |
| raise ValueError("Either spatial_upsample or temporal_upsample must be True") | |
| self.post_upsample_res_blocks = torch.nn.ModuleList( | |
| [ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)] | |
| ) | |
| self.final_conv = ConvNd(mid_channels, in_channels, kernel_size=3, padding=1) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
| if self.dims == 2: | |
| hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| hidden_states = self.initial_conv(hidden_states) | |
| hidden_states = self.initial_norm(hidden_states) | |
| hidden_states = self.initial_activation(hidden_states) | |
| for block in self.res_blocks: | |
| hidden_states = block(hidden_states) | |
| hidden_states = self.upsampler(hidden_states) | |
| for block in self.post_upsample_res_blocks: | |
| hidden_states = block(hidden_states) | |
| hidden_states = self.final_conv(hidden_states) | |
| hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
| else: | |
| hidden_states = self.initial_conv(hidden_states) | |
| hidden_states = self.initial_norm(hidden_states) | |
| hidden_states = self.initial_activation(hidden_states) | |
| for block in self.res_blocks: | |
| hidden_states = block(hidden_states) | |
| if self.temporal_upsample: | |
| hidden_states = self.upsampler(hidden_states) | |
| hidden_states = hidden_states[:, :, 1:, :, :] | |
| else: | |
| hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| hidden_states = self.upsampler(hidden_states) | |
| hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
| for block in self.post_upsample_res_blocks: | |
| hidden_states = block(hidden_states) | |
| hidden_states = self.final_conv(hidden_states) | |
| return hidden_states | |