Spaces:
Runtime error
Runtime error
| # Copyright 2024 the Latte Team and The HuggingFace Team. | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import html | |
| import inspect | |
| import re | |
| import urllib.parse as ul | |
| from dataclasses import dataclass | |
| from typing import Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from ...callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from ...models import AutoencoderKL, LatteTransformer3DModel | |
| from ...pipelines.pipeline_utils import DiffusionPipeline | |
| from ...schedulers import KarrasDiffusionSchedulers | |
| from ...utils import ( | |
| BACKENDS_MAPPING, | |
| BaseOutput, | |
| deprecate, | |
| is_bs4_available, | |
| is_ftfy_available, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import is_compiled_module, randn_tensor | |
| from ...video_processor import VideoProcessor | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| if is_bs4_available(): | |
| from bs4 import BeautifulSoup | |
| if is_ftfy_available(): | |
| import ftfy | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import LattePipeline | |
| >>> from diffusers.utils import export_to_gif | |
| >>> # You can replace the checkpoint id with "maxin-cn/Latte-1" too. | |
| >>> pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16) | |
| >>> # Enable memory optimizations. | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> prompt = "A small cactus with a happy face in the Sahara desert." | |
| >>> videos = pipe(prompt).frames[0] | |
| >>> export_to_gif(videos, "latte.gif") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class LattePipelineOutput(BaseOutput): | |
| frames: torch.Tensor | |
| class LattePipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-video generation using Latte. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. | |
| text_encoder ([`T5EncoderModel`]): | |
| Frozen text-encoder. Latte uses | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
| tokenizer (`T5Tokenizer`): | |
| Tokenizer of class | |
| [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
| transformer ([`LatteTransformer3DModel`]): | |
| A text conditioned `LatteTransformer3DModel` to denoise the encoded video latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded video latents. | |
| """ | |
| bad_punct_regex = re.compile(r"[#®•©™&@·º½¾¿¡§~\)\(\]\[\}\{\|\\/\\*]{1,}") | |
| _optional_components = ["tokenizer", "text_encoder"] | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKL, | |
| transformer: LatteTransformer3DModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) | |
| # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py | |
| def mask_text_embeddings(self, emb, mask): | |
| if emb.shape[0] == 1: | |
| keep_index = mask.sum().item() | |
| return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096 | |
| else: | |
| masked_feature = emb * mask[:, None, :, None] # 1 120 4096 | |
| return masked_feature, emb.shape[2] | |
| # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: str = "", | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| clean_caption: bool = False, | |
| mask_feature: bool = True, | |
| dtype=None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds` | |
| instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
| Latte, this should be "". | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of video that should be generated per prompt | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. For Latte, it's should be the embeddings of the "" string. | |
| clean_caption (bool, defaults to `False`): | |
| If `True`, the function will preprocess and clean the provided caption before encoding. | |
| mask_feature: (bool, defaults to `True`): | |
| If `True`, the function will mask the text embeddings. | |
| """ | |
| embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None | |
| if device is None: | |
| device = self._execution_device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| max_length = 120 | |
| if prompt_embeds is None: | |
| prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {max_length} tokens: {removed_text}" | |
| ) | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| prompt_embeds_attention_mask = attention_mask | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| else: | |
| prompt_embeds_attention_mask = torch.ones_like(prompt_embeds) | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| elif self.transformer is not None: | |
| dtype = self.transformer.dtype | |
| else: | |
| dtype = None | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1) | |
| prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt | |
| uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| else: | |
| negative_prompt_embeds = None | |
| # Perform additional masking. | |
| if mask_feature and not embeds_initially_provided: | |
| prompt_embeds = prompt_embeds.unsqueeze(1) | |
| masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask) | |
| masked_prompt_embeds = masked_prompt_embeds.squeeze(1) | |
| masked_negative_prompt_embeds = ( | |
| negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None | |
| ) | |
| return masked_prompt_embeds, masked_negative_prompt_embeds | |
| return prompt_embeds, negative_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
| def _text_preprocessing(self, text, clean_caption=False): | |
| if clean_caption and not is_bs4_available(): | |
| logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) | |
| logger.warning("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if clean_caption and not is_ftfy_available(): | |
| logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) | |
| logger.warning("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if not isinstance(text, (tuple, list)): | |
| text = [text] | |
| def process(text: str): | |
| if clean_caption: | |
| text = self._clean_caption(text) | |
| text = self._clean_caption(text) | |
| else: | |
| text = text.lower().strip() | |
| return text | |
| return [process(t) for t in text] | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
| def _clean_caption(self, caption): | |
| caption = str(caption) | |
| caption = ul.unquote_plus(caption) | |
| caption = caption.strip().lower() | |
| caption = re.sub("<person>", "person", caption) | |
| # urls: | |
| caption = re.sub( | |
| r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| caption = re.sub( | |
| r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| # html: | |
| caption = BeautifulSoup(caption, features="html.parser").text | |
| # @<nickname> | |
| caption = re.sub(r"@[\w\d]+\b", "", caption) | |
| # 31C0—31EF CJK Strokes | |
| # 31F0—31FF Katakana Phonetic Extensions | |
| # 3200—32FF Enclosed CJK Letters and Months | |
| # 3300—33FF CJK Compatibility | |
| # 3400—4DBF CJK Unified Ideographs Extension A | |
| # 4DC0—4DFF Yijing Hexagram Symbols | |
| # 4E00—9FFF CJK Unified Ideographs | |
| caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
| caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
| caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
| caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
| caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
| caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
| caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
| ####################################################### | |
| # все виды тире / all types of dash --> "-" | |
| caption = re.sub( | |
| r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
| "-", | |
| caption, | |
| ) | |
| # кавычки к одному стандарту | |
| caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
| caption = re.sub(r"[‘’]", "'", caption) | |
| # " | |
| caption = re.sub(r""?", "", caption) | |
| # & | |
| caption = re.sub(r"&", "", caption) | |
| # ip addresses: | |
| caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
| # article ids: | |
| caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
| # \n | |
| caption = re.sub(r"\\n", " ", caption) | |
| # "#123" | |
| caption = re.sub(r"#\d{1,3}\b", "", caption) | |
| # "#12345.." | |
| caption = re.sub(r"#\d{5,}\b", "", caption) | |
| # "123456.." | |
| caption = re.sub(r"\b\d{6,}\b", "", caption) | |
| # filenames: | |
| caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
| # | |
| caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
| caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
| caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
| caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
| # this-is-my-cute-cat / this_is_my_cute_cat | |
| regex2 = re.compile(r"(?:\-|\_)") | |
| if len(re.findall(regex2, caption)) > 3: | |
| caption = re.sub(regex2, " ", caption) | |
| caption = ftfy.fix_text(caption) | |
| caption = html.unescape(html.unescape(caption)) | |
| caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
| caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
| caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
| caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
| caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
| caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
| caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
| caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
| caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
| caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
| caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
| caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
| caption = re.sub(r"\s+", " ", caption) | |
| caption.strip() | |
| caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
| caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
| caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
| caption = re.sub(r"^\.\S+$", "", caption) | |
| return caption.strip() | |
| # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents | |
| def prepare_latents( | |
| self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| num_frames, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: str = "", | |
| num_inference_steps: int = 50, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: float = 7.5, | |
| num_images_per_prompt: int = 1, | |
| video_length: int = 16, | |
| height: int = 512, | |
| width: int = 512, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: str = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| clean_caption: bool = True, | |
| mask_feature: bool = True, | |
| enable_temporal_attentions: bool = True, | |
| decode_chunk_size: int = 14, | |
| ) -> Union[LattePipelineOutput, Tuple]: | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the video generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality video at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
| timesteps are used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion | |
| Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. | |
| of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
| `guidance_scale > 1`. Higher guidance scale encourages to generate videos that are closely linked to | |
| the text `prompt`, usually at the expense of lower video quality. | |
| video_length (`int`, *optional*, defaults to 16): | |
| The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of videos to generate per prompt. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The height in pixels of the generated video. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The width in pixels of the generated video. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only | |
| applies to [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. For Latte this negative prompt should be "". If not provided, | |
| negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate video. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
| callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
| A callback function or a list of callback functions to be called at the end of each denoising step. | |
| callback_on_step_end_tensor_inputs (`List[str]`, *optional*): | |
| A list of tensor inputs that should be passed to the callback function. If not defined, all tensor | |
| inputs will be passed. | |
| clean_caption (`bool`, *optional*, defaults to `True`): | |
| Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
| be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
| prompt. | |
| mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked. | |
| enable_temporal_attentions (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions | |
| decode_chunk_size (`int`, *optional*): | |
| The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the | |
| expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality. | |
| For lower memory usage, reduce `decode_chunk_size`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. Default | |
| decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else video_length | |
| # 1. Check inputs. Raise error if not correct | |
| height = height or self.transformer.config.sample_size * self.vae_scale_factor | |
| width = width or self.transformer.config.sample_size * self.vae_scale_factor | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Default height and width to transformer | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| clean_caption=clean_caption, | |
| mask_feature=mask_feature, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latents. | |
| latent_channels = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| latent_channels, | |
| video_length, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| current_timestep = t | |
| if not torch.is_tensor(current_timestep): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = latent_model_input.device.type == "mps" | |
| is_npu = latent_model_input.device.type == "npu" | |
| if isinstance(current_timestep, float): | |
| dtype = torch.float32 if (is_mps or is_npu) else torch.float64 | |
| else: | |
| dtype = torch.int32 if (is_mps or is_npu) else torch.int64 | |
| current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) | |
| elif len(current_timestep.shape) == 0: | |
| current_timestep = current_timestep[None].to(latent_model_input.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| current_timestep = current_timestep.expand(latent_model_input.shape[0]) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=current_timestep, | |
| enable_temporal_attentions=enable_temporal_attentions, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # use learned sigma? | |
| if not ( | |
| hasattr(self.scheduler.config, "variance_type") | |
| and self.scheduler.config.variance_type in ["learned", "learned_range"] | |
| ): | |
| noise_pred = noise_pred.chunk(2, dim=1)[0] | |
| # compute previous video: x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if output_type == "latents": | |
| deprecation_message = ( | |
| "Passing `output_type='latents'` is deprecated. Please pass `output_type='latent'` instead." | |
| ) | |
| deprecate("output_type_latents", "1.0.0", deprecation_message, standard_warn=False) | |
| output_type = "latent" | |
| if not output_type == "latent": | |
| video = self.decode_latents(latents, video_length, decode_chunk_size=decode_chunk_size) | |
| video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return LattePipelineOutput(frames=video) | |
| # Similar to diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion.decode_latents | |
| def decode_latents(self, latents: torch.Tensor, video_length: int, decode_chunk_size: int = 14): | |
| # [batch, channels, frames, height, width] -> [batch*frames, channels, height, width] | |
| latents = latents.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward | |
| accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys()) | |
| # decode decode_chunk_size frames at a time to avoid OOM | |
| frames = [] | |
| for i in range(0, latents.shape[0], decode_chunk_size): | |
| num_frames_in = latents[i : i + decode_chunk_size].shape[0] | |
| decode_kwargs = {} | |
| if accepts_num_frames: | |
| # we only pass num_frames_in if it's expected | |
| decode_kwargs["num_frames"] = num_frames_in | |
| frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample | |
| frames.append(frame) | |
| frames = torch.cat(frames, dim=0) | |
| # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width] | |
| frames = frames.reshape(-1, video_length, *frames.shape[1:]).permute(0, 2, 1, 3, 4) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| frames = frames.float() | |
| return frames | |