Spaces:
Runtime error
Runtime error
Cosmos-Predict2-2B
/
diffusers_repo
/examples
/research_projects
/controlnet
/train_controlnet_webdataset.py
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2025 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import functools | |
| import gc | |
| import itertools | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| from pathlib import Path | |
| from typing import List, Optional, Union | |
| import accelerate | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint | |
| import transformers | |
| import webdataset as wds | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from braceexpand import braceexpand | |
| from huggingface_hub import create_repo, upload_folder | |
| from packaging import version | |
| from PIL import Image | |
| from torch.utils.data import default_collate | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import AutoTokenizer, DPTForDepthEstimation, DPTImageProcessor, PretrainedConfig | |
| from webdataset.tariterators import ( | |
| base_plus_ext, | |
| tar_file_expander, | |
| url_opener, | |
| valid_sample, | |
| ) | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| EulerDiscreteScheduler, | |
| StableDiffusionXLControlNetPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import check_min_version, is_wandb_available | |
| from diffusers.utils.import_utils import is_xformers_available | |
| MAX_SEQ_LENGTH = 77 | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.18.0.dev0") | |
| logger = get_logger(__name__) | |
| def filter_keys(key_set): | |
| def _f(dictionary): | |
| return {k: v for k, v in dictionary.items() if k in key_set} | |
| return _f | |
| def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None): | |
| """Return function over iterator that groups key, value pairs into samples. | |
| :param keys: function that splits the key into key and extension (base_plus_ext) | |
| :param lcase: convert suffixes to lower case (Default value = True) | |
| """ | |
| current_sample = None | |
| for filesample in data: | |
| assert isinstance(filesample, dict) | |
| fname, value = filesample["fname"], filesample["data"] | |
| prefix, suffix = keys(fname) | |
| if prefix is None: | |
| continue | |
| if lcase: | |
| suffix = suffix.lower() | |
| # FIXME webdataset version throws if suffix in current_sample, but we have a potential for | |
| # this happening in the current LAION400m dataset if a tar ends with same prefix as the next | |
| # begins, rare, but can happen since prefix aren't unique across tar files in that dataset | |
| if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample: | |
| if valid_sample(current_sample): | |
| yield current_sample | |
| current_sample = {"__key__": prefix, "__url__": filesample["__url__"]} | |
| if suffixes is None or suffix in suffixes: | |
| current_sample[suffix] = value | |
| if valid_sample(current_sample): | |
| yield current_sample | |
| def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue): | |
| # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw | |
| streams = url_opener(src, handler=handler) | |
| files = tar_file_expander(streams, handler=handler) | |
| samples = group_by_keys_nothrow(files, handler=handler) | |
| return samples | |
| def control_transform(image): | |
| image = np.array(image) | |
| low_threshold = 100 | |
| high_threshold = 200 | |
| image = cv2.Canny(image, low_threshold, high_threshold) | |
| image = image[:, :, None] | |
| image = np.concatenate([image, image, image], axis=2) | |
| control_image = Image.fromarray(image) | |
| return control_image | |
| def canny_image_transform(example, resolution=1024): | |
| image = example["image"] | |
| image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image) | |
| # get crop coordinates | |
| c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution)) | |
| image = transforms.functional.crop(image, c_top, c_left, resolution, resolution) | |
| control_image = control_transform(image) | |
| image = transforms.ToTensor()(image) | |
| image = transforms.Normalize([0.5], [0.5])(image) | |
| control_image = transforms.ToTensor()(control_image) | |
| example["image"] = image | |
| example["control_image"] = control_image | |
| example["crop_coords"] = (c_top, c_left) | |
| return example | |
| def depth_image_transform(example, feature_extractor, resolution=1024): | |
| image = example["image"] | |
| image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image) | |
| # get crop coordinates | |
| c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution)) | |
| image = transforms.functional.crop(image, c_top, c_left, resolution, resolution) | |
| control_image = feature_extractor(images=image, return_tensors="pt").pixel_values.squeeze(0) | |
| image = transforms.ToTensor()(image) | |
| image = transforms.Normalize([0.5], [0.5])(image) | |
| example["image"] = image | |
| example["control_image"] = control_image | |
| example["crop_coords"] = (c_top, c_left) | |
| return example | |
| class WebdatasetFilter: | |
| def __init__(self, min_size=1024, max_pwatermark=0.5): | |
| self.min_size = min_size | |
| self.max_pwatermark = max_pwatermark | |
| def __call__(self, x): | |
| try: | |
| if "json" in x: | |
| x_json = json.loads(x["json"]) | |
| filter_size = (x_json.get("original_width", 0.0) or 0.0) >= self.min_size and x_json.get( | |
| "original_height", 0 | |
| ) >= self.min_size | |
| filter_watermark = (x_json.get("pwatermark", 1.0) or 1.0) <= self.max_pwatermark | |
| return filter_size and filter_watermark | |
| else: | |
| return False | |
| except Exception: | |
| return False | |
| class Text2ImageDataset: | |
| def __init__( | |
| self, | |
| train_shards_path_or_url: Union[str, List[str]], | |
| eval_shards_path_or_url: Union[str, List[str]], | |
| num_train_examples: int, | |
| per_gpu_batch_size: int, | |
| global_batch_size: int, | |
| num_workers: int, | |
| resolution: int = 256, | |
| center_crop: bool = True, | |
| random_flip: bool = False, | |
| shuffle_buffer_size: int = 1000, | |
| pin_memory: bool = False, | |
| persistent_workers: bool = False, | |
| control_type: str = "canny", | |
| feature_extractor: Optional[DPTImageProcessor] = None, | |
| ): | |
| if not isinstance(train_shards_path_or_url, str): | |
| train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url] | |
| # flatten list using itertools | |
| train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url)) | |
| if not isinstance(eval_shards_path_or_url, str): | |
| eval_shards_path_or_url = [list(braceexpand(urls)) for urls in eval_shards_path_or_url] | |
| # flatten list using itertools | |
| eval_shards_path_or_url = list(itertools.chain.from_iterable(eval_shards_path_or_url)) | |
| def get_orig_size(json): | |
| return (int(json.get("original_width", 0.0)), int(json.get("original_height", 0.0))) | |
| if control_type == "canny": | |
| image_transform = functools.partial(canny_image_transform, resolution=resolution) | |
| elif control_type == "depth": | |
| image_transform = functools.partial( | |
| depth_image_transform, feature_extractor=feature_extractor, resolution=resolution | |
| ) | |
| processing_pipeline = [ | |
| wds.decode("pil", handler=wds.ignore_and_continue), | |
| wds.rename( | |
| image="jpg;png;jpeg;webp", | |
| control_image="jpg;png;jpeg;webp", | |
| text="text;txt;caption", | |
| orig_size="json", | |
| handler=wds.warn_and_continue, | |
| ), | |
| wds.map(filter_keys({"image", "control_image", "text", "orig_size"})), | |
| wds.map_dict(orig_size=get_orig_size), | |
| wds.map(image_transform), | |
| wds.to_tuple("image", "control_image", "text", "orig_size", "crop_coords"), | |
| ] | |
| # Create train dataset and loader | |
| pipeline = [ | |
| wds.ResampledShards(train_shards_path_or_url), | |
| tarfile_to_samples_nothrow, | |
| wds.select(WebdatasetFilter(min_size=512)), | |
| wds.shuffle(shuffle_buffer_size), | |
| *processing_pipeline, | |
| wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate), | |
| ] | |
| num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers)) # per dataloader worker | |
| num_batches = num_worker_batches * num_workers | |
| num_samples = num_batches * global_batch_size | |
| # each worker is iterating over this | |
| self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches) | |
| self._train_dataloader = wds.WebLoader( | |
| self._train_dataset, | |
| batch_size=None, | |
| shuffle=False, | |
| num_workers=num_workers, | |
| pin_memory=pin_memory, | |
| persistent_workers=persistent_workers, | |
| ) | |
| # add meta-data to dataloader instance for convenience | |
| self._train_dataloader.num_batches = num_batches | |
| self._train_dataloader.num_samples = num_samples | |
| # Create eval dataset and loader | |
| pipeline = [ | |
| wds.SimpleShardList(eval_shards_path_or_url), | |
| wds.split_by_worker, | |
| wds.tarfile_to_samples(handler=wds.ignore_and_continue), | |
| *processing_pipeline, | |
| wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate), | |
| ] | |
| self._eval_dataset = wds.DataPipeline(*pipeline) | |
| self._eval_dataloader = wds.WebLoader( | |
| self._eval_dataset, | |
| batch_size=None, | |
| shuffle=False, | |
| num_workers=num_workers, | |
| pin_memory=pin_memory, | |
| persistent_workers=persistent_workers, | |
| ) | |
| def train_dataset(self): | |
| return self._train_dataset | |
| def train_dataloader(self): | |
| return self._train_dataloader | |
| def eval_dataset(self): | |
| return self._eval_dataset | |
| def eval_dataloader(self): | |
| return self._eval_dataloader | |
| def image_grid(imgs, rows, cols): | |
| assert len(imgs) == rows * cols | |
| w, h = imgs[0].size | |
| grid = Image.new("RGB", size=(cols * w, rows * h)) | |
| for i, img in enumerate(imgs): | |
| grid.paste(img, box=(i % cols * w, i // cols * h)) | |
| return grid | |
| def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step): | |
| logger.info("Running validation... ") | |
| controlnet = accelerator.unwrap_model(controlnet) | |
| pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| vae=vae, | |
| unet=unet, | |
| controlnet=controlnet, | |
| revision=args.revision, | |
| torch_dtype=weight_dtype, | |
| ) | |
| # pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config) | |
| pipeline = pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=True) | |
| if args.enable_xformers_memory_efficient_attention: | |
| pipeline.enable_xformers_memory_efficient_attention() | |
| if args.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| if len(args.validation_image) == len(args.validation_prompt): | |
| validation_images = args.validation_image | |
| validation_prompts = args.validation_prompt | |
| elif len(args.validation_image) == 1: | |
| validation_images = args.validation_image * len(args.validation_prompt) | |
| validation_prompts = args.validation_prompt | |
| elif len(args.validation_prompt) == 1: | |
| validation_images = args.validation_image | |
| validation_prompts = args.validation_prompt * len(args.validation_image) | |
| else: | |
| raise ValueError( | |
| "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" | |
| ) | |
| image_logs = [] | |
| for validation_prompt, validation_image in zip(validation_prompts, validation_images): | |
| validation_image = Image.open(validation_image).convert("RGB") | |
| validation_image = validation_image.resize((args.resolution, args.resolution)) | |
| images = [] | |
| for _ in range(args.num_validation_images): | |
| with torch.autocast("cuda"): | |
| image = pipeline( | |
| validation_prompt, image=validation_image, num_inference_steps=20, generator=generator | |
| ).images[0] | |
| images.append(image) | |
| image_logs.append( | |
| {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} | |
| ) | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| for log in image_logs: | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| formatted_images = [np.asarray(validation_image)] | |
| for image in images: | |
| formatted_images.append(np.asarray(image)) | |
| formatted_images = np.stack(formatted_images) | |
| tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") | |
| elif tracker.name == "wandb": | |
| formatted_images = [] | |
| for log in image_logs: | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) | |
| for image in images: | |
| image = wandb.Image(image, caption=validation_prompt) | |
| formatted_images.append(image) | |
| tracker.log({"validation": formatted_images}) | |
| else: | |
| logger.warning(f"image logging not implemented for {tracker.name}") | |
| del pipeline | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return image_logs | |
| def import_model_class_from_model_name_or_path( | |
| pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
| ): | |
| text_encoder_config = PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModel | |
| return CLIPTextModel | |
| elif model_class == "CLIPTextModelWithProjection": | |
| from transformers import CLIPTextModelWithProjection | |
| return CLIPTextModelWithProjection | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): | |
| img_str = "" | |
| if image_logs is not None: | |
| img_str = "You can find some example images below.\n" | |
| for i, log in enumerate(image_logs): | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| validation_image.save(os.path.join(repo_folder, "image_control.png")) | |
| img_str += f"prompt: {validation_prompt}\n" | |
| images = [validation_image] + images | |
| image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) | |
| img_str += f"\n" | |
| yaml = f""" | |
| --- | |
| license: creativeml-openrail-m | |
| base_model: {base_model} | |
| tags: | |
| - stable-diffusion-xl | |
| - stable-diffusion-xl-diffusers | |
| - text-to-image | |
| - diffusers | |
| - controlnet | |
| - diffusers-training | |
| - webdataset | |
| inference: true | |
| --- | |
| """ | |
| model_card = f""" | |
| # controlnet-{repo_id} | |
| These are controlnet weights trained on {base_model} with new type of conditioning. | |
| {img_str} | |
| """ | |
| with open(os.path.join(repo_folder, "README.md"), "w") as f: | |
| f.write(yaml + model_card) | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_vae_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", | |
| ) | |
| parser.add_argument( | |
| "--controlnet_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to pretrained controlnet model or model identifier from huggingface.co/models." | |
| " If not specified controlnet weights are initialized from unet.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help=( | |
| "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be" | |
| " float32 precision." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="controlnet-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--crops_coords_top_left_h", | |
| type=int, | |
| default=0, | |
| help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
| ) | |
| parser.add_argument( | |
| "--crops_coords_top_left_w", | |
| type=int, | |
| default=0, | |
| help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
| "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
| "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
| "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
| "instructions." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=3, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=5e-6, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=1, | |
| help=("Number of subprocesses to use for data loading."), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--set_grads_to_none", | |
| action="store_true", | |
| help=( | |
| "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
| " behaviors, so disable this argument if it causes any problems. More info:" | |
| " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_shards_path_or_url", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--eval_shards_path_or_url", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing the target image." | |
| ) | |
| parser.add_argument( | |
| "--conditioning_image_column", | |
| type=str, | |
| default="conditioning_image", | |
| help="The column of the dataset containing the controlnet conditioning image.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing a caption or a list of captions.", | |
| ) | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--proportion_empty_prompts", | |
| type=float, | |
| default=0, | |
| help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." | |
| " Provide either a matching number of `--validation_image`s, a single `--validation_image`" | |
| " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_image", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" | |
| " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" | |
| " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" | |
| " `--validation_image` that will be used with all `--validation_prompt`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=4, | |
| help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=100, | |
| help=( | |
| "Run validation every X steps. Validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`" | |
| " and logging the images." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="sd_xl_train_controlnet", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--control_type", | |
| type=str, | |
| default="canny", | |
| help=("The type of controlnet conditioning image to use. One of `canny`, `depth` Defaults to `canny`."), | |
| ) | |
| parser.add_argument( | |
| "--transformer_layers_per_block", | |
| type=str, | |
| default=None, | |
| help=("The number of layers per block in the transformer. If None, defaults to `args.transformer_layers`."), | |
| ) | |
| parser.add_argument( | |
| "--old_style_controlnet", | |
| action="store_true", | |
| default=False, | |
| help=( | |
| "Use the old style controlnet, which is a single transformer layer with a single head. Defaults to False." | |
| ), | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: | |
| raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") | |
| if args.validation_prompt is not None and args.validation_image is None: | |
| raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") | |
| if args.validation_prompt is None and args.validation_image is not None: | |
| raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") | |
| if ( | |
| args.validation_image is not None | |
| and args.validation_prompt is not None | |
| and len(args.validation_image) != 1 | |
| and len(args.validation_prompt) != 1 | |
| and len(args.validation_image) != len(args.validation_prompt) | |
| ): | |
| raise ValueError( | |
| "Must provide either 1 `--validation_image`, 1 `--validation_prompt`," | |
| " or the same number of `--validation_prompt`s and `--validation_image`s" | |
| ) | |
| if args.resolution % 8 != 0: | |
| raise ValueError( | |
| "`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." | |
| ) | |
| return args | |
| # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True): | |
| prompt_embeds_list = [] | |
| captions = [] | |
| for caption in prompt_batch: | |
| if random.random() < proportion_empty_prompts: | |
| captions.append("") | |
| elif isinstance(caption, str): | |
| captions.append(caption) | |
| elif isinstance(caption, (list, np.ndarray)): | |
| # take a random caption if there are multiple | |
| captions.append(random.choice(caption) if is_train else caption[0]) | |
| with torch.no_grad(): | |
| for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
| text_inputs = tokenizer( | |
| captions, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(text_encoder.device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) | |
| return prompt_embeds, pooled_prompt_embeds | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, | |
| exist_ok=True, | |
| token=args.hub_token, | |
| private=True, | |
| ).repo_id | |
| # Load the tokenizers | |
| tokenizer_one = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False | |
| ) | |
| tokenizer_two = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False | |
| ) | |
| # import correct text encoder classes | |
| text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision | |
| ) | |
| text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" | |
| ) | |
| # Load scheduler and models | |
| # noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| text_encoder_one = text_encoder_cls_one.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
| ) | |
| text_encoder_two = text_encoder_cls_two.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision | |
| ) | |
| vae_path = ( | |
| args.pretrained_model_name_or_path | |
| if args.pretrained_vae_model_name_or_path is None | |
| else args.pretrained_vae_model_name_or_path | |
| ) | |
| vae = AutoencoderKL.from_pretrained( | |
| vae_path, | |
| subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
| revision=args.revision, | |
| ) | |
| unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision | |
| ) | |
| if args.controlnet_model_name_or_path: | |
| logger.info("Loading existing controlnet weights") | |
| pre_controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path) | |
| else: | |
| logger.info("Initializing controlnet weights from unet") | |
| pre_controlnet = ControlNetModel.from_unet(unet) | |
| if args.transformer_layers_per_block is not None: | |
| transformer_layers_per_block = [int(x) for x in args.transformer_layers_per_block.split(",")] | |
| down_block_types = ["DownBlock2D" if l == 0 else "CrossAttnDownBlock2D" for l in transformer_layers_per_block] | |
| controlnet = ControlNetModel.from_config( | |
| pre_controlnet.config, | |
| down_block_types=down_block_types, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| ) | |
| controlnet.load_state_dict(pre_controlnet.state_dict(), strict=False) | |
| del pre_controlnet | |
| else: | |
| controlnet = pre_controlnet | |
| if args.control_type == "depth": | |
| feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") | |
| depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas") | |
| depth_model.requires_grad_(False) | |
| else: | |
| feature_extractor = None | |
| depth_model = None | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| i = len(weights) - 1 | |
| while len(weights) > 0: | |
| weights.pop() | |
| model = models[i] | |
| sub_dir = "controlnet" | |
| model.save_pretrained(os.path.join(output_dir, sub_dir)) | |
| i -= 1 | |
| def load_model_hook(models, input_dir): | |
| while len(models) > 0: | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| # load diffusers style into model | |
| load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") | |
| model.register_to_config(**load_model.config) | |
| model.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| vae.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| text_encoder_one.requires_grad_(False) | |
| text_encoder_two.requires_grad_(False) | |
| controlnet.train() | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| controlnet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| if args.gradient_checkpointing: | |
| controlnet.enable_gradient_checkpointing() | |
| # Check that all trainable models are in full precision | |
| low_precision_error_string = ( | |
| " Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
| " doing mixed precision training, copy of the weights should still be float32." | |
| ) | |
| if accelerator.unwrap_model(controlnet).dtype != torch.float32: | |
| raise ValueError( | |
| f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}" | |
| ) | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| # Optimizer creation | |
| params_to_optimize = controlnet.parameters() | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move vae, unet and text_encoder to device and cast to weight_dtype | |
| # The VAE is in float32 to avoid NaN losses. | |
| if args.pretrained_vae_model_name_or_path is not None: | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| else: | |
| vae.to(accelerator.device, dtype=torch.float32) | |
| unet.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_one.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_two.to(accelerator.device, dtype=weight_dtype) | |
| if args.control_type == "depth": | |
| depth_model.to(accelerator.device, dtype=weight_dtype) | |
| # Here, we compute not just the text embeddings but also the additional embeddings | |
| # needed for the SD XL UNet to operate. | |
| def compute_embeddings( | |
| prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True | |
| ): | |
| target_size = (args.resolution, args.resolution) | |
| original_sizes = list(map(list, zip(*original_sizes))) | |
| crops_coords_top_left = list(map(list, zip(*crop_coords))) | |
| original_sizes = torch.tensor(original_sizes, dtype=torch.long) | |
| crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long) | |
| # crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w) | |
| prompt_embeds, pooled_prompt_embeds = encode_prompt( | |
| prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train | |
| ) | |
| add_text_embeds = pooled_prompt_embeds | |
| # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids | |
| # add_time_ids = list(crops_coords_top_left + target_size) | |
| add_time_ids = list(target_size) | |
| add_time_ids = torch.tensor([add_time_ids]) | |
| add_time_ids = add_time_ids.repeat(len(prompt_batch), 1) | |
| # add_time_ids = torch.cat([torch.tensor(original_sizes, dtype=torch.long), add_time_ids], dim=-1) | |
| add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1) | |
| add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype) | |
| prompt_embeds = prompt_embeds.to(accelerator.device) | |
| add_text_embeds = add_text_embeds.to(accelerator.device) | |
| unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} | |
| def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | |
| sigmas = noise_scheduler.sigmas.to(device=accelerator.device, dtype=dtype) | |
| schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device) | |
| timesteps = timesteps.to(accelerator.device) | |
| step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < n_dim: | |
| sigma = sigma.unsqueeze(-1) | |
| return sigma | |
| dataset = Text2ImageDataset( | |
| train_shards_path_or_url=args.train_shards_path_or_url, | |
| eval_shards_path_or_url=args.eval_shards_path_or_url, | |
| num_train_examples=args.max_train_samples, | |
| per_gpu_batch_size=args.train_batch_size, | |
| global_batch_size=args.train_batch_size * accelerator.num_processes, | |
| num_workers=args.dataloader_num_workers, | |
| resolution=args.resolution, | |
| center_crop=False, | |
| random_flip=False, | |
| shuffle_buffer_size=1000, | |
| pin_memory=True, | |
| persistent_workers=True, | |
| control_type=args.control_type, | |
| feature_extractor=feature_extractor, | |
| ) | |
| train_dataloader = dataset.train_dataloader | |
| # Let's first compute all the embeddings so that we can free up the text encoders | |
| # from memory. | |
| text_encoders = [text_encoder_one, text_encoder_two] | |
| tokenizers = [tokenizer_one, tokenizer_two] | |
| compute_embeddings_fn = functools.partial( | |
| compute_embeddings, | |
| proportion_empty_prompts=args.proportion_empty_prompts, | |
| text_encoders=text_encoders, | |
| tokenizers=tokenizers, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=args.max_train_steps * accelerator.num_processes, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| controlnet, optimizer, lr_scheduler = accelerator.prepare(controlnet, optimizer, lr_scheduler) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = dict(vars(args)) | |
| # tensorboard cannot handle list types for config | |
| tracker_config.pop("validation_prompt") | |
| tracker_config.pop("validation_image") | |
| accelerator.init_trackers(args.tracker_project_name, config=tracker_config) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num batches each epoch = {train_dataloader.num_batches}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| image_logs = None | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(controlnet): | |
| image, control_image, text, orig_size, crop_coords = batch | |
| encoded_text = compute_embeddings_fn(text, orig_size, crop_coords) | |
| image = image.to(accelerator.device, non_blocking=True) | |
| control_image = control_image.to(accelerator.device, non_blocking=True) | |
| if args.pretrained_vae_model_name_or_path is not None: | |
| pixel_values = image.to(dtype=weight_dtype) | |
| if vae.dtype != weight_dtype: | |
| vae.to(dtype=weight_dtype) | |
| else: | |
| pixel_values = image | |
| # latents = vae.encode(pixel_values).latent_dist.sample() | |
| # encode pixel values with batch size of at most 8 | |
| latents = [] | |
| for i in range(0, pixel_values.shape[0], 8): | |
| latents.append(vae.encode(pixel_values[i : i + 8]).latent_dist.sample()) | |
| latents = torch.cat(latents, dim=0) | |
| latents = latents * vae.config.scaling_factor | |
| if args.pretrained_vae_model_name_or_path is None: | |
| latents = latents.to(weight_dtype) | |
| if args.control_type == "depth": | |
| control_image = control_image.to(weight_dtype) | |
| with torch.autocast("cuda"): | |
| depth_map = depth_model(control_image).predicted_depth | |
| depth_map = torch.nn.functional.interpolate( | |
| depth_map.unsqueeze(1), | |
| size=image.shape[2:], | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
| depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
| depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
| control_image = (depth_map * 255.0).to(torch.uint8).float() / 255.0 # hack to match inference | |
| control_image = torch.cat([control_image] * 3, dim=1) | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents) | |
| bsz = latents.shape[0] | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| sigmas = get_sigmas(timesteps, len(noisy_latents.shape), noisy_latents.dtype) | |
| inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5) | |
| # ControlNet conditioning. | |
| controlnet_image = control_image.to(dtype=weight_dtype) | |
| prompt_embeds = encoded_text.pop("prompt_embeds") | |
| down_block_res_samples, mid_block_res_sample = controlnet( | |
| inp_noisy_latents, | |
| timesteps, | |
| encoder_hidden_states=prompt_embeds, | |
| added_cond_kwargs=encoded_text, | |
| controlnet_cond=controlnet_image, | |
| return_dict=False, | |
| ) | |
| # Predict the noise residual | |
| model_pred = unet( | |
| inp_noisy_latents, | |
| timesteps, | |
| encoder_hidden_states=prompt_embeds, | |
| added_cond_kwargs=encoded_text, | |
| down_block_additional_residuals=[ | |
| sample.to(dtype=weight_dtype) for sample in down_block_res_samples | |
| ], | |
| mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), | |
| ).sample | |
| model_pred = model_pred * (-sigmas) + noisy_latents | |
| weighing = sigmas**-2.0 | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = latents # compute loss against the denoised latents | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| loss = torch.mean( | |
| (weighing.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1 | |
| ) | |
| loss = loss.mean() | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = controlnet.parameters() | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
| image_logs = log_validation( | |
| vae, unet, controlnet, args, accelerator, weight_dtype, global_step | |
| ) | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| controlnet = accelerator.unwrap_model(controlnet) | |
| controlnet.save_pretrained(args.output_dir) | |
| if args.push_to_hub: | |
| save_model_card( | |
| repo_id, | |
| image_logs=image_logs, | |
| base_model=args.pretrained_model_name_or_path, | |
| repo_folder=args.output_dir, | |
| ) | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |