|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
|
|
import torch |
|
|
|
|
|
from diffusers import AutoencoderKLWan |
|
|
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device |
|
|
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
|
class AutoencoderKLWanTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
|
model_class = AutoencoderKLWan |
|
|
main_input_name = "sample" |
|
|
base_precision = 1e-2 |
|
|
|
|
|
def get_autoencoder_kl_wan_config(self): |
|
|
return { |
|
|
"base_dim": 3, |
|
|
"z_dim": 16, |
|
|
"dim_mult": [1, 1, 1, 1], |
|
|
"num_res_blocks": 1, |
|
|
"temperal_downsample": [False, True, True], |
|
|
} |
|
|
|
|
|
@property |
|
|
def dummy_input(self): |
|
|
batch_size = 2 |
|
|
num_frames = 9 |
|
|
num_channels = 3 |
|
|
sizes = (16, 16) |
|
|
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) |
|
|
return {"sample": image} |
|
|
|
|
|
@property |
|
|
def dummy_input_tiling(self): |
|
|
batch_size = 2 |
|
|
num_frames = 9 |
|
|
num_channels = 3 |
|
|
sizes = (128, 128) |
|
|
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) |
|
|
return {"sample": image} |
|
|
|
|
|
@property |
|
|
def input_shape(self): |
|
|
return (3, 9, 16, 16) |
|
|
|
|
|
@property |
|
|
def output_shape(self): |
|
|
return (3, 9, 16, 16) |
|
|
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
|
init_dict = self.get_autoencoder_kl_wan_config() |
|
|
inputs_dict = self.dummy_input |
|
|
return init_dict, inputs_dict |
|
|
|
|
|
def prepare_init_args_and_inputs_for_tiling(self): |
|
|
init_dict = self.get_autoencoder_kl_wan_config() |
|
|
inputs_dict = self.dummy_input_tiling |
|
|
return init_dict, inputs_dict |
|
|
|
|
|
def test_enable_disable_tiling(self): |
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_tiling() |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
|
|
inputs_dict.update({"return_dict": False}) |
|
|
|
|
|
torch.manual_seed(0) |
|
|
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model.enable_tiling(96, 96, 64, 64) |
|
|
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
|
|
self.assertLess( |
|
|
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), |
|
|
0.5, |
|
|
"VAE tiling should not affect the inference results", |
|
|
) |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model.disable_tiling() |
|
|
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
|
|
self.assertEqual( |
|
|
output_without_tiling.detach().cpu().numpy().all(), |
|
|
output_without_tiling_2.detach().cpu().numpy().all(), |
|
|
"Without tiling outputs should match with the outputs when tiling is manually disabled.", |
|
|
) |
|
|
|
|
|
def test_enable_disable_slicing(self): |
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
|
|
inputs_dict.update({"return_dict": False}) |
|
|
|
|
|
torch.manual_seed(0) |
|
|
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model.enable_slicing() |
|
|
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
|
|
self.assertLess( |
|
|
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), |
|
|
0.05, |
|
|
"VAE slicing should not affect the inference results", |
|
|
) |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model.disable_slicing() |
|
|
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
|
|
self.assertEqual( |
|
|
output_without_slicing.detach().cpu().numpy().all(), |
|
|
output_without_slicing_2.detach().cpu().numpy().all(), |
|
|
"Without slicing outputs should match with the outputs when slicing is manually disabled.", |
|
|
) |
|
|
|
|
|
@unittest.skip("Gradient checkpointing has not been implemented yet") |
|
|
def test_gradient_checkpointing_is_applied(self): |
|
|
pass |
|
|
|
|
|
@unittest.skip("Test not supported") |
|
|
def test_forward_with_norm_groups(self): |
|
|
pass |
|
|
|
|
|
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'") |
|
|
def test_layerwise_casting_inference(self): |
|
|
pass |
|
|
|
|
|
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'") |
|
|
def test_layerwise_casting_training(self): |
|
|
pass |
|
|
|