Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass | |
| from typing import List, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from diffusers.utils import BaseOutput, get_logger | |
| logger = get_logger(__name__) | |
| class CosmosPipelineOutput(BaseOutput): | |
| r""" | |
| Output class for Cosmos any-to-world/video pipelines. | |
| Args: | |
| frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): | |
| List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing | |
| denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape | |
| `(batch_size, num_frames, channels, height, width)`. | |
| """ | |
| frames: torch.Tensor | |
| class CosmosImagePipelineOutput(BaseOutput): | |
| """ | |
| Output class for CogView3 pipelines. | |
| Args: | |
| images (`List[PIL.Image.Image]` or `np.ndarray`) | |
| List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, | |
| num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. | |
| """ | |
| images: Union[List[PIL.Image.Image], np.ndarray] | |