|
import argparse |
|
import os |
|
import os.path as osp |
|
|
|
import numpy as np |
|
import torch |
|
import trimesh |
|
from pytorch3d.ops import SubdivideMeshes |
|
from pytorch3d.structures import Meshes |
|
from scipy.spatial import cKDTree |
|
|
|
import lib.smplx as smplx |
|
from lib.common.local_affine import register |
|
from lib.dataset.mesh_util import ( |
|
SMPLX, |
|
export_obj, |
|
keep_largest, |
|
o3d_ransac, |
|
poisson, |
|
remesh_laplacian, |
|
) |
|
from lib.smplx.lbs import general_lbs |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-n", "--name", type=str, default="") |
|
parser.add_argument("-g", "--gpu", type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
smplx_container = SMPLX() |
|
device = torch.device(f"cuda:{args.gpu}") |
|
|
|
|
|
prefix = f"./results/econ/obj/{args.name}" |
|
smpl_path = f"{prefix}_smpl_00.npy" |
|
smplx_param = np.load(smpl_path, allow_pickle=True).item() |
|
|
|
|
|
econ_path = f"{prefix}_0_full.obj" |
|
econ_obj = trimesh.load(econ_path) |
|
assert (econ_obj.vertex_normals.shape[1] == 3) |
|
econ_obj.export(f"{prefix}_econ_raw.ply") |
|
|
|
|
|
econ_obj.vertices *= np.array([1.0, -1.0, -1.0]) |
|
econ_obj.vertices /= smplx_param["scale"].cpu().numpy() |
|
econ_obj.vertices -= smplx_param["transl"].cpu().numpy() |
|
|
|
for key in smplx_param.keys(): |
|
smplx_param[key] = smplx_param[key].cpu().view(1, -1) |
|
|
|
smpl_model = smplx.create( |
|
smplx_container.model_dir, |
|
model_type="smplx", |
|
gender="neutral", |
|
age="adult", |
|
use_face_contour=False, |
|
use_pca=False, |
|
num_betas=200, |
|
num_expression_coeffs=50, |
|
ext='pkl' |
|
) |
|
|
|
smpl_out_lst = [] |
|
|
|
|
|
for pose_type in ["a-pose", "t-pose", "da-pose", "pose"]: |
|
smpl_out_lst.append( |
|
smpl_model( |
|
body_pose=smplx_param["body_pose"], |
|
global_orient=smplx_param["global_orient"], |
|
betas=smplx_param["betas"], |
|
expression=smplx_param["expression"], |
|
jaw_pose=smplx_param["jaw_pose"], |
|
left_hand_pose=smplx_param["left_hand_pose"], |
|
right_hand_pose=smplx_param["right_hand_pose"], |
|
return_verts=True, |
|
return_full_pose=True, |
|
return_joint_transformation=True, |
|
return_vertex_transformation=True, |
|
pose_type=pose_type |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
smpl_verts = smpl_out_lst[3].vertices.detach()[0] |
|
smpl_tree = cKDTree(smpl_verts.cpu().numpy()) |
|
dist, idx = smpl_tree.query(econ_obj.vertices, k=5) |
|
|
|
if not osp.exists(f"{prefix}_econ_da.obj") or not osp.exists(f"{prefix}_smpl_da.obj"): |
|
|
|
|
|
econ_verts = torch.tensor(econ_obj.vertices).float() |
|
rot_mat_t = smpl_out_lst[3].vertex_transformation.detach()[0][idx[:, 0]] |
|
homo_coord = torch.ones_like(econ_verts)[..., :1] |
|
econ_cano_verts = torch.inverse(rot_mat_t) @ torch.cat([econ_verts, homo_coord], |
|
dim=1).unsqueeze(-1) |
|
econ_cano_verts = econ_cano_verts[:, :3, 0].cpu() |
|
econ_cano = trimesh.Trimesh(econ_cano_verts, econ_obj.faces) |
|
|
|
|
|
rot_mat_da = smpl_out_lst[2].vertex_transformation.detach()[0][idx[:, 0]] |
|
econ_da_verts = rot_mat_da @ torch.cat([econ_cano_verts, homo_coord], dim=1).unsqueeze(-1) |
|
econ_da = trimesh.Trimesh(econ_da_verts[:, :3, 0].cpu(), econ_obj.faces) |
|
|
|
|
|
smpl_da = trimesh.Trimesh( |
|
smpl_out_lst[2].vertices.detach()[0], smpl_model.faces, maintain_orders=True, process=False |
|
) |
|
smpl_da.export(f"{prefix}_smpl_da.obj") |
|
|
|
|
|
econ_da_body = econ_da.copy() |
|
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) |
|
econ_da_body.update_faces(mano_mask[econ_da.faces].all(axis=1)) |
|
econ_da_body.remove_unreferenced_vertices() |
|
econ_da_body = keep_largest(econ_da_body) |
|
|
|
|
|
register_mask = ~np.isin( |
|
np.arange(smpl_da.vertices.shape[0]), |
|
np.concatenate([smplx_container.smplx_mano_vid, smplx_container.smplx_front_flame_vid]) |
|
) |
|
register_mask *= ~smplx_container.eyeball_vertex_mask.bool().numpy() |
|
smpl_da_body = smpl_da.copy() |
|
smpl_da_body.update_faces(register_mask[smpl_da.faces].all(axis=1)) |
|
smpl_da_body.remove_unreferenced_vertices() |
|
smpl_da_body = keep_largest(smpl_da_body) |
|
|
|
|
|
smpl_da_body = Meshes( |
|
verts=[torch.tensor(smpl_da_body.vertices).float()], |
|
faces=[torch.tensor(smpl_da_body.faces).long()], |
|
).to(device) |
|
sm = SubdivideMeshes(smpl_da_body) |
|
smpl_da_body = register(econ_da_body, sm(smpl_da_body), device) |
|
|
|
|
|
econ_da_body = econ_da.copy() |
|
edge_before = np.sqrt( |
|
((econ_obj.vertices[econ_cano.edges[:, 0]] - |
|
econ_obj.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1) |
|
) |
|
edge_after = np.sqrt( |
|
((econ_da.vertices[econ_cano.edges[:, 0]] - |
|
econ_da.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1) |
|
) |
|
edge_diff = edge_after / edge_before.clip(1e-2) |
|
streched_mask = np.unique(econ_cano.edges[edge_diff > 6]) |
|
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) |
|
mano_mask[streched_mask] = False |
|
econ_da_body.update_faces(mano_mask[econ_cano.faces].all(axis=1)) |
|
econ_da_body.remove_unreferenced_vertices() |
|
|
|
|
|
econ_da_tree = cKDTree(econ_da.vertices) |
|
dist, idx = econ_da_tree.query(smpl_da_body.vertices, k=1) |
|
smpl_da_body.update_faces((dist > 0.02)[smpl_da_body.faces].all(axis=1)) |
|
smpl_da_body.remove_unreferenced_vertices() |
|
|
|
smpl_hand = smpl_da.copy() |
|
smpl_hand.update_faces( |
|
smplx_container.smplx_mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1) |
|
) |
|
smpl_hand.remove_unreferenced_vertices() |
|
econ_da = sum([smpl_hand, smpl_da_body, econ_da_body]) |
|
econ_da = poisson(econ_da, f"{prefix}_econ_da.obj", depth=10, face_count=50000) |
|
econ_da = remesh_laplacian(econ_da, f"{prefix}_econ_da.obj") |
|
else: |
|
econ_da = trimesh.load(f"{prefix}_econ_da.obj") |
|
smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Start building the SMPL-X compatible ECON model...") |
|
|
|
smpl_tree = cKDTree(smpl_da.vertices) |
|
dist, idx = smpl_tree.query(econ_da.vertices, k=5) |
|
knn_weights = np.exp(-dist**2) |
|
knn_weights /= knn_weights.sum(axis=1, keepdims=True) |
|
|
|
econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(dim=-1) |
|
econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(dim=-1).T |
|
|
|
num_posedirs = smpl_model.posedirs.shape[0] |
|
econ_posedirs = ( |
|
smpl_model.posedirs.view(num_posedirs, -1, 3)[:, idx, :] * knn_weights[None, ..., None] |
|
).sum(dim=-2).view(num_posedirs, -1).float() |
|
|
|
econ_J_regressor /= econ_J_regressor.sum(dim=1, keepdims=True).clip(min=1e-10) |
|
econ_lbs_weights /= econ_lbs_weights.sum(dim=1, keepdims=True) |
|
|
|
rot_mat_da = smpl_out_lst[2].vertex_transformation.detach()[0][idx[:, 0]] |
|
econ_da_verts = torch.tensor(econ_da.vertices).float() |
|
econ_cano_verts = torch.inverse(rot_mat_da) @ torch.cat([ |
|
econ_da_verts, torch.ones_like(econ_da_verts)[..., :1] |
|
], |
|
dim=1).unsqueeze(-1) |
|
econ_cano_verts = econ_cano_verts[:, :3, 0].double() |
|
|
|
|
|
|
|
|
|
|
|
new_pose = smpl_out_lst[3].full_pose |
|
|
|
|
|
posed_econ_verts, _ = general_lbs( |
|
pose=new_pose, |
|
v_template=econ_cano_verts.unsqueeze(0), |
|
posedirs=econ_posedirs, |
|
J_regressor=econ_J_regressor, |
|
parents=smpl_model.parents, |
|
lbs_weights=econ_lbs_weights |
|
) |
|
aligned_econ_verts = posed_econ_verts[0].detach().cpu().numpy() |
|
aligned_econ_verts += smplx_param["transl"].cpu().numpy() |
|
aligned_econ_verts *= smplx_param["scale"].cpu().numpy() * np.array([1.0, -1.0, -1.0]) |
|
econ_pose = trimesh.Trimesh(aligned_econ_verts, econ_da.faces) |
|
assert (econ_pose.vertex_normals.shape[1] == 3) |
|
econ_pose.export(f"{prefix}_econ_pose.ply") |
|
|
|
|
|
|
|
|
|
|
|
print("Start ICP registration between posed & original ECON...") |
|
import open3d as o3d |
|
|
|
source = o3d.io.read_point_cloud(f"{prefix}_econ_pose.ply") |
|
target = o3d.io.read_point_cloud(f"{prefix}_econ_raw.ply") |
|
trans_init = o3d_ransac(source, target) |
|
icp_criteria = o3d.pipelines.registration.ICPConvergenceCriteria( |
|
relative_fitness=0.000001, relative_rmse=0.000001, max_iteration=100 |
|
) |
|
|
|
reg_p2l = o3d.pipelines.registration.registration_icp( |
|
source, |
|
target, |
|
0.1, |
|
trans_init, |
|
o3d.pipelines.registration.TransformationEstimationPointToPlane(), |
|
criteria=icp_criteria |
|
) |
|
econ_pose.apply_transform(reg_p2l.transformation) |
|
|
|
cache_path = f"{prefix.replace('obj','cache')}" |
|
os.makedirs(cache_path, exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
print("Start Color mapping...") |
|
from PIL import Image |
|
from torchvision import transforms |
|
|
|
from lib.common.render import query_color |
|
from lib.common.render_utils import Pytorch3dRasterizer |
|
|
|
if not osp.exists(f"{prefix}_econ_icp_rgb.ply"): |
|
masked_image = f"./results/econ/png/{args.name}_cloth.png" |
|
tensor_image = transforms.ToTensor()(Image.open(masked_image))[:, :, :512] |
|
final_colors = query_color( |
|
torch.tensor(econ_pose.vertices).float(), |
|
torch.tensor(econ_pose.faces).long(), |
|
((tensor_image - 0.5) * 2.0).unsqueeze(0).to(device), |
|
device=device, |
|
paint_normal=False, |
|
) |
|
final_colors[final_colors == tensor_image[:, 0, 0] * 255.0] = 0.0 |
|
final_colors = final_colors.detach().cpu().numpy() |
|
econ_pose.visual.vertex_colors = final_colors |
|
econ_pose.export(f"{prefix}_econ_icp_rgb.ply") |
|
else: |
|
mesh = trimesh.load(f"{prefix}_econ_icp_rgb.ply") |
|
final_colors = mesh.visual.vertex_colors[:, :3] |
|
|
|
print("Start UV texture generation...") |
|
|
|
|
|
v_np = econ_pose.vertices |
|
f_np = econ_pose.faces |
|
|
|
vt_cache = osp.join(cache_path, "vt.pt") |
|
ft_cache = osp.join(cache_path, "ft.pt") |
|
|
|
if osp.exists(vt_cache) and osp.exists(ft_cache): |
|
vt = torch.load(vt_cache).to(device) |
|
ft = torch.load(ft_cache).to(device) |
|
else: |
|
import xatlas |
|
atlas = xatlas.Atlas() |
|
atlas.add_mesh(v_np, f_np) |
|
chart_options = xatlas.ChartOptions() |
|
chart_options.max_iterations = 4 |
|
atlas.generate(chart_options=chart_options) |
|
vmapping, ft_np, vt_np = atlas[0] |
|
|
|
vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device) |
|
ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device) |
|
torch.save(vt.cpu(), vt_cache) |
|
torch.save(ft.cpu(), ft_cache) |
|
|
|
|
|
uv_rasterizer = Pytorch3dRasterizer(image_size=512, device=device) |
|
texture_npy = uv_rasterizer.get_texture( |
|
torch.cat([(vt - 0.5) * 2.0, torch.ones_like(vt[:, :1])], dim=1), |
|
ft, |
|
torch.tensor(v_np).unsqueeze(0).float(), |
|
torch.tensor(f_np).unsqueeze(0).long(), |
|
torch.tensor(final_colors).unsqueeze(0).float() / 255.0, |
|
) |
|
|
|
gray_texture = texture_npy.copy() |
|
gray_texture[texture_npy.sum(axis=2) == 0.0] = 0.5 |
|
Image.fromarray((gray_texture * 255.0).astype(np.uint8)).save(f"{cache_path}/texture.png") |
|
|
|
|
|
white_texture = texture_npy.copy() |
|
white_texture[texture_npy.sum(axis=2) == 0.0] = 1.0 |
|
Image.fromarray((white_texture * 255.0).astype(np.uint8)).save(f"{cache_path}/mask.png") |
|
|
|
|
|
new_pose = smpl_out_lst[0].full_pose |
|
new_pose[:, :3] = 0. |
|
|
|
posed_econ_verts, _ = general_lbs( |
|
pose=new_pose, |
|
v_template=econ_cano_verts.unsqueeze(0), |
|
posedirs=econ_posedirs, |
|
J_regressor=econ_J_regressor, |
|
parents=smpl_model.parents, |
|
lbs_weights=econ_lbs_weights |
|
) |
|
|
|
|
|
with open(f"{cache_path}/material.mtl", 'w') as fp: |
|
fp.write(f'newmtl mat0 \n') |
|
fp.write(f'Ka 1.000000 1.000000 1.000000 \n') |
|
fp.write(f'Kd 1.000000 1.000000 1.000000 \n') |
|
fp.write(f'Ks 0.000000 0.000000 0.000000 \n') |
|
fp.write(f'Tr 1.000000 \n') |
|
fp.write(f'illum 1 \n') |
|
fp.write(f'Ns 0.000000 \n') |
|
fp.write(f'map_Kd texture.png \n') |
|
|
|
export_obj(posed_econ_verts[0].detach().cpu().numpy(), f_np, vt, ft, f"{cache_path}/mesh.obj") |
|
|