fffiloni's picture
Update app.py
7064043
raw
history blame
4.91 kB
# Dependencies, see also requirement.txt ;)
import gradio as gr
import cv2
import numpy as np
from scenedetect import open_video, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
# —————————————————————————————————————————————————
title = "Scene Edit Detection"
description = "Gradio demo of PyScene scenedetect, to automatically find every shots in a video sequence, then save each shots as a splitted mp4 video chunk to download"
# SET INPUTS
video_input = gr.Video(source="upload", format="mp4");
# SET DATA AND COMPONENTS OUTPUTS
# This would be filled like this:
# data_outputs = [ [List from detection], "video_chunk_n0.mp4", "video_chunk_n1.mp4", ... , "video_chunk_n.mp4", [List of video filepath to download], [List of still images from each shot found] ]
data_outputs = []
# This would be filled like this:
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
gradio_components_outputs = []
# This would be nice if number of outputs could be set after Interface Launch:
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
# outputs = gradio_components_outputs
working_outputs = ["json", "file", "gallery"]
# —————————————————————————————————————————————————
def convert_to_tuple(list):
return tuple(list);
def find_scenes(video_path, threshold=27.0):
# Open our video, create a scene manager, and add a detector.
video = open_video(video_path)
scene_manager = SceneManager()
scene_manager.add_detector(
ContentDetector(threshold=threshold))
# Start detection
scene_manager.detect_scenes(video, show_progress=True)
scene_list = scene_manager.get_scene_list()
# Push the list of scenes into data_outputs
data_outputs.append(scene_list)
gradio_components_outputs.append("json")
#print(scene_list)
shots = []
stills = []
# For each shot found, set entry and exit points as seconds from frame number
# Then split video into chunks and store them into shots List
# Then extract first frame of each shot as thumbnail for the gallery
for i, shot in enumerate(scene_list):
# STEP 1
# Get timecode in seconds
framerate = shot[0].get_framerate()
shot_in = shot[0].get_frames() / framerate
shot_out = (shot[1].get_frames() - 1) / framerate
# Set name template for each shot
target_name = str(i)+"_cut.mp4"
# Split chunk
ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname=target_name)
# Push chunk into shots List
shots.append(target_name)
# Push each chunk into data_outputs
data_outputs.append(target_name)
gradio_components_outputs.append("video")
# —————————————————————————————————————————————————
# STEP 2
# extract first frame of each shot with cv2
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
print('frames per second =',fps)
frame_id = shot[0].get_frames() # value from scene_list from step 1
video.set(cv2.CAP_PROP_POS_FRAMES, frame_id)
ret, frame = video.read()
# Save frame as PNG file
img = str(frame_id) + '_screenshot.png'
cv2.imwrite(img,frame)
# Push image into stills List
stills.append(img)
# Push the list of video shots into data_outputs for Gradio file component
data_outputs.append(shots)
gradio_components_outputs.append("file")
# Push the list of still images into data_outputs
data_outputs.append(stills)
gradio_components_outputs.append("gallery")
# This would have been used as gradio outputs,
# if we could set number of outputs after the interface launch
# That's not (yet ?) possible
results = convert_to_tuple(data_outputs)
print(results)
# return List of shots as JSON, List of video chunks, List of still images
# *
# Would be nice to be able to return my results tuple as outputs,
# while number of chunks found is not fixed:
# return results
return scene_list, shots, stills
# —————————————————————————————————————————————————
gr.Interface(fn=find_scenes, inputs=video_input, outputs=working_outputs, title=title, description=description).launch()