mshukor
commited on
Commit
•
ce7469b
1
Parent(s):
902be23
vqa
Browse files
app.py
CHANGED
@@ -37,6 +37,7 @@ from ruamel.yaml import YAML
|
|
37 |
import torch
|
38 |
import gradio as gr
|
39 |
|
|
|
40 |
|
41 |
yaml=YAML(typ='safe')
|
42 |
|
@@ -82,33 +83,33 @@ msg = model_caption.load_state_dict(state_dict,strict=False)
|
|
82 |
|
83 |
model_caption.bfloat16()
|
84 |
|
85 |
-
###### VQA
|
86 |
-
config = 'configs/image/ePALM_vqa.yaml'
|
87 |
-
config = yaml.load(open(config, 'r'))
|
88 |
-
|
89 |
-
start_layer_idx = 19
|
90 |
-
end_layer_idx = 31
|
91 |
-
low_cpu = True
|
92 |
-
model_vqa = ePALM(opt_model_name=text_model,
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
)
|
101 |
-
print("Model Built")
|
102 |
-
model_vqa.to(device)
|
103 |
|
104 |
|
105 |
checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
|
106 |
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
107 |
-
|
108 |
-
msg = model_vqa.load_state_dict(state_dict,strict=False)
|
109 |
|
110 |
|
111 |
-
model_vqa.bfloat16()
|
112 |
|
113 |
|
114 |
|
@@ -154,13 +155,80 @@ transform = transforms.Compose([
|
|
154 |
normalize,
|
155 |
])
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
|
|
|
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
|
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
do_sample=False
|
165 |
num_beams=3
|
166 |
max_length=30
|
@@ -188,19 +256,20 @@ def inference(image, audio, video, task_type, instruction):
|
|
188 |
elif task_type == 'Visual Question Answering':
|
189 |
question = instruction+'?'+special_answer_token
|
190 |
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
|
191 |
-
|
|
|
192 |
elif task_type == 'Visual Question Answering':
|
193 |
question = instruction+'?'+special_answer_token
|
194 |
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
|
195 |
-
|
196 |
-
model =
|
197 |
else:
|
198 |
raise NotImplemented
|
199 |
|
200 |
if "Video" in task_type:
|
201 |
-
|
202 |
elif "Audio" in task_type:
|
203 |
-
|
204 |
else:
|
205 |
image = transform(image)
|
206 |
image = image.to(device,non_blocking=True).unsqueeze(0)
|
|
|
37 |
import torch
|
38 |
import gradio as gr
|
39 |
|
40 |
+
import torchaudio
|
41 |
|
42 |
yaml=YAML(typ='safe')
|
43 |
|
|
|
83 |
|
84 |
model_caption.bfloat16()
|
85 |
|
86 |
+
# ###### VQA
|
87 |
+
# config = 'configs/image/ePALM_vqa.yaml'
|
88 |
+
# config = yaml.load(open(config, 'r'))
|
89 |
+
|
90 |
+
# start_layer_idx = 19
|
91 |
+
# end_layer_idx = 31
|
92 |
+
# low_cpu = True
|
93 |
+
# model_vqa = ePALM(opt_model_name=text_model,
|
94 |
+
# vision_model_name=vision_model_name,
|
95 |
+
# use_vis_prefix=True,
|
96 |
+
# start_layer_idx=start_layer_idx,
|
97 |
+
# end_layer_idx=end_layer_idx,
|
98 |
+
# return_hidden_state_vision=True,
|
99 |
+
# config=config,
|
100 |
+
# low_cpu=low_cpu
|
101 |
+
# )
|
102 |
+
# print("Model Built")
|
103 |
+
# model_vqa.to(device)
|
104 |
|
105 |
|
106 |
checkpoint_path = 'checkpoints/float32/ePALM_vqa/checkpoint_best.pth'
|
107 |
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
108 |
+
state_dict_vqa = checkpoint['model']
|
109 |
+
# msg = model_vqa.load_state_dict(state_dict,strict=False)
|
110 |
|
111 |
|
112 |
+
# model_vqa.bfloat16()
|
113 |
|
114 |
|
115 |
|
|
|
155 |
normalize,
|
156 |
])
|
157 |
|
158 |
+
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
|
159 |
+
test_transform = transforms.Compose([
|
160 |
+
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
|
161 |
+
type_transform,
|
162 |
+
normalize,
|
163 |
+
])
|
164 |
+
from dataset.video_utils import VIDEO_READER_FUNCS
|
165 |
+
video_reader = VIDEO_READER_FUNCS['decord']
|
166 |
+
|
167 |
+
def read_video(path, num_frames=16):
|
168 |
+
|
169 |
+
|
170 |
+
frames, frame_indices, video_duration = video_reader(
|
171 |
+
path, num_frames, 'rand', max_num_frames=-1
|
172 |
+
)
|
173 |
+
video = test_transform(frames)
|
174 |
+
|
175 |
+
return video
|
176 |
|
177 |
+
def read_audio(path):
|
178 |
+
|
179 |
+
melbins = 128
|
180 |
+
target_length = 1024
|
181 |
+
skip_norm = False
|
182 |
+
norm_mean = -4.2677393
|
183 |
+
norm_std = 4.5689974
|
184 |
|
185 |
+
waveform, sr = torchaudio.load(path)
|
186 |
+
waveform = waveform - waveform.mean()
|
187 |
|
188 |
+
# audio
|
189 |
+
fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr, use_energy=False,
|
190 |
+
window_type='hanning', num_mel_bins=melbins, dither=0.0,
|
191 |
+
frame_shift=10)
|
192 |
+
|
193 |
+
n_frames = fbank.shape[0]
|
194 |
|
195 |
+
p = target_length - n_frames
|
196 |
|
197 |
+
# cut and pad
|
198 |
+
if p > 0:
|
199 |
+
m = torch.nn.ZeroPad2d((0, 0, 0, p))
|
200 |
+
fbank = m(fbank)
|
201 |
+
elif p < 0:
|
202 |
+
fbank = fbank[0:target_length, :]
|
203 |
|
204 |
|
205 |
+
|
206 |
+
|
207 |
+
# SpecAug, not do for eval set
|
208 |
+
|
209 |
+
fbank = torch.transpose(fbank, 0, 1)
|
210 |
+
# this is just to satisfy new torchaudio version, which only accept [1, freq, time]
|
211 |
+
fbank = fbank.unsqueeze(0)
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
# squeeze it back, it is just a trick to satisfy new torchaudio version
|
216 |
+
fbank = fbank.squeeze(0)
|
217 |
+
fbank = torch.transpose(fbank, 0, 1)
|
218 |
+
|
219 |
+
|
220 |
+
# normalize the input for both training and test
|
221 |
+
if not skip_norm:
|
222 |
+
fbank = (fbank - norm_mean) / (norm_std * 2)
|
223 |
+
# skip normalization the input if you are trying to get the normalization stats.
|
224 |
+
else:
|
225 |
+
pass
|
226 |
+
|
227 |
+
|
228 |
+
audio = fbank
|
229 |
+
|
230 |
+
return audio
|
231 |
+
|
232 |
do_sample=False
|
233 |
num_beams=3
|
234 |
max_length=30
|
|
|
256 |
elif task_type == 'Visual Question Answering':
|
257 |
question = instruction+'?'+special_answer_token
|
258 |
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
|
259 |
+
model_caption = model_caption.load_state_dict(state_dict_vqa,strict=False)
|
260 |
+
model = model_caption.clone()
|
261 |
elif task_type == 'Visual Question Answering':
|
262 |
question = instruction+'?'+special_answer_token
|
263 |
text_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
|
264 |
+
model_caption = model_caption.load_state_dict(state_dict_video_qa,strict=False)
|
265 |
+
model = model_caption.clone()
|
266 |
else:
|
267 |
raise NotImplemented
|
268 |
|
269 |
if "Video" in task_type:
|
270 |
+
image = read_video(image)
|
271 |
elif "Audio" in task_type:
|
272 |
+
image = read_audio(image)
|
273 |
else:
|
274 |
image = transform(image)
|
275 |
image = image.to(device,non_blocking=True).unsqueeze(0)
|