|
import numpy as np |
|
import io |
|
import os |
|
import time |
|
from collections import defaultdict, deque |
|
import datetime |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
def optimizer_to(optim, device): |
|
for param in optim.state.values(): |
|
|
|
if isinstance(param, torch.Tensor): |
|
param.data = param.data.to(device) |
|
if param._grad is not None: |
|
param._grad.data = param._grad.data.to(device) |
|
elif isinstance(param, dict): |
|
for subparam in param.values(): |
|
if isinstance(subparam, torch.Tensor): |
|
subparam.data = subparam.data.to(device) |
|
if subparam._grad is not None: |
|
subparam._grad.data = subparam._grad.data.to(device) |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t", accelerator=None): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
self.accelerator = accelerator |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {}".format(name, str(meter)) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def global_avg(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {:.4f}".format(name, meter.global_avg) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
log_msg = [ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}' |
|
] |
|
if torch.cuda.is_available(): |
|
log_msg.append('max mem: {memory:.0f}') |
|
log_msg = self.delimiter.join(log_msg) |
|
MB = 1024.0 * 1024.0 |
|
|
|
if self.accelerator is not None: |
|
print_func = self.accelerator.print |
|
else: |
|
print_func = print |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print_func(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print_func(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print_func('{} Total time: {} ({:.4f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
|
|
class AttrDict(dict): |
|
def __init__(self, *args, **kwargs): |
|
super(AttrDict, self).__init__(*args, **kwargs) |
|
self.__dict__ = self |
|
|
|
|
|
def compute_acc(logits, label, reduction='mean'): |
|
ret = (torch.argmax(logits, dim=1) == label).float() |
|
if reduction == 'none': |
|
return ret.detach() |
|
elif reduction == 'mean': |
|
return ret.mean().item() |
|
|
|
def compute_n_params(model, return_str=True): |
|
tot = 0 |
|
for p in model.parameters(): |
|
w = 1 |
|
for x in p.shape: |
|
w *= x |
|
tot += w |
|
if return_str: |
|
if tot >= 1e6: |
|
return '{:.1f}M'.format(tot / 1e6) |
|
else: |
|
return '{:.1f}K'.format(tot / 1e3) |
|
else: |
|
return tot |
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
print(args.gpu, os.environ['SLURM_LOCALID'], os.environ['SLURM_JOB_NODELIST'], os.environ['SLURM_STEP_GPUS']) |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = 'nccl' |
|
print('world_size', args.world_size, 'gpu', args.gpu, 'dist_url:', args.dist_url) |
|
print('| distributed init (rank {}): {}'.format( |
|
args.rank, args.dist_url), flush=True) |
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
print("init") |
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
def init_distributed_mode_multinodes(args): |
|
import hostlist |
|
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
print('slurm') |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
hostnames = hostlist.expand_hostlist(os.environ['SLURM_JOB_NODELIST']) |
|
os.environ['MASTER_ADDR'] = hostnames[0] |
|
gpu_ids = os.environ['SLURM_STEP_GPUS'].split(",") |
|
|
|
|
|
print(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = 'nccl' |
|
args.dist_url = 'tcp://'+os.environ['MASTER_ADDR']+':'+os.environ['MASTER_PORT'] |
|
|
|
print('world_size', args.world_size, 'gpu', args.gpu) |
|
print('| distributed init (rank {}): {}'.format( |
|
args.rank, args.dist_url), flush=True) |
|
|
|
|
|
|
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
|
|
|
|
|
|
|
|
def init_distributed_mode_multinodes_jz(args): |
|
import hostlist |
|
if args.jean_zay: |
|
hostnames = hostlist.expand_hostlist(os.environ['SLURM_JOB_NODELIST']) |
|
os.environ['MASTER_ADDR'] = hostnames[0] |
|
|
|
print(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'], os.environ['SLURM_PROCID'], os.environ['SLURM_NTASKS'], os.environ['SLURM_LOCALID']) |
|
args.gpu = int(os.environ['SLURM_LOCALID']) |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.world_size = int(os.environ['SLURM_NTASKS']) |
|
args.dist_url = 'env://'+os.environ['MASTER_ADDR']+':'+os.environ['MASTER_PORT'] |
|
|
|
print('jean zay') |
|
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
print('slurm') |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = 'nccl' |
|
print('world_size', args.world_size, 'gpu', args.gpu, 'rank', args.rank) |
|
print('| distributed init (rank {}): {}'.format( |
|
args.rank, args.dist_url), flush=True) |
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
|
|
|
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This file contains primitives for multi-gpu communication. |
|
This is useful when doing distributed training. |
|
""" |
|
|
|
import functools |
|
import logging |
|
import numpy as np |
|
import pickle |
|
import torch |
|
import torch.distributed as dist |
|
|
|
import torch |
|
|
|
_LOCAL_PROCESS_GROUP = None |
|
""" |
|
A torch process group which only includes processes that on the same machine as the current process. |
|
This variable is set when processes are spawned by `launch()` in "engine/launch.py". |
|
""" |
|
|
|
|
|
def get_world_size() -> int: |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank() -> int: |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def get_local_rank() -> int: |
|
""" |
|
Returns: |
|
The rank of the current process within the local (per-machine) process group. |
|
""" |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
assert _LOCAL_PROCESS_GROUP is not None |
|
return dist.get_rank(group=_LOCAL_PROCESS_GROUP) |
|
|
|
|
|
def get_local_size() -> int: |
|
""" |
|
Returns: |
|
The size of the per-machine process group, |
|
i.e. the number of processes per machine. |
|
""" |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) |
|
|
|
|
|
def is_main_process() -> bool: |
|
return get_rank() == 0 |
|
|
|
|
|
def synchronize(): |
|
""" |
|
Helper function to synchronize (barrier) among all processes when |
|
using distributed training |
|
""" |
|
if not dist.is_available(): |
|
return |
|
if not dist.is_initialized(): |
|
return |
|
world_size = dist.get_world_size() |
|
if world_size == 1: |
|
return |
|
dist.barrier() |
|
|
|
|
|
@functools.lru_cache() |
|
def _get_global_gloo_group(): |
|
""" |
|
Return a process group based on gloo backend, containing all the ranks |
|
The result is cached. |
|
""" |
|
if dist.get_backend() == "nccl": |
|
return dist.new_group(backend="gloo") |
|
else: |
|
return dist.group.WORLD |
|
|
|
|
|
def _serialize_to_tensor(data, group): |
|
backend = dist.get_backend(group) |
|
assert backend in ["gloo", "nccl"] |
|
device = torch.device("cpu" if backend == "gloo" else "cuda") |
|
|
|
buffer = pickle.dumps(data) |
|
if len(buffer) > 1024 ** 3: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
"Rank {} trying to all-gather {:.2f} GB of data on device {}".format( |
|
get_rank(), len(buffer) / (1024 ** 3), device |
|
) |
|
) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to(device=device) |
|
return tensor |
|
|
|
|
|
def _pad_to_largest_tensor(tensor, group): |
|
""" |
|
Returns: |
|
list[int]: size of the tensor, on each rank |
|
Tensor: padded tensor that has the max size |
|
""" |
|
world_size = dist.get_world_size(group=group) |
|
assert ( |
|
world_size >= 1 |
|
), "comm.gather/all_gather must be called from ranks within the given group!" |
|
local_size = torch.tensor( |
|
[tensor.numel()], dtype=torch.int64, device=tensor.device) |
|
size_list = [ |
|
torch.zeros([1], dtype=torch.int64, device=tensor.device) |
|
for _ in range(world_size) |
|
] |
|
dist.all_gather(size_list, local_size, group=group) |
|
size_list = [int(size.item()) for size in size_list] |
|
|
|
max_size = max(size_list) |
|
|
|
|
|
|
|
if local_size != max_size: |
|
padding = torch.zeros( |
|
(max_size - local_size,), dtype=torch.uint8, device=tensor.device |
|
) |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
return size_list, tensor |
|
|
|
|
|
def all_gather(data, group=None): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors). |
|
Args: |
|
data: any picklable object |
|
group: a torch process group. By default, will use a group which |
|
contains all ranks on gloo backend. |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
if get_world_size() == 1: |
|
return [data] |
|
if group is None: |
|
group = _get_global_gloo_group() |
|
if dist.get_world_size(group) == 1: |
|
return [data] |
|
|
|
tensor = _serialize_to_tensor(data, group) |
|
|
|
size_list, tensor = _pad_to_largest_tensor(tensor, group) |
|
max_size = max(size_list) |
|
|
|
|
|
tensor_list = [ |
|
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) |
|
for _ in size_list |
|
] |
|
dist.all_gather(tensor_list, tensor, group=group) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def gather(data, dst=0, group=None): |
|
""" |
|
Run gather on arbitrary picklable data (not necessarily tensors). |
|
Args: |
|
data: any picklable object |
|
dst (int): destination rank |
|
group: a torch process group. By default, will use a group which |
|
contains all ranks on gloo backend. |
|
Returns: |
|
list[data]: on dst, a list of data gathered from each rank. Otherwise, |
|
an empty list. |
|
""" |
|
if get_world_size() == 1: |
|
return [data] |
|
if group is None: |
|
group = _get_global_gloo_group() |
|
if dist.get_world_size(group=group) == 1: |
|
return [data] |
|
rank = dist.get_rank(group=group) |
|
|
|
tensor = _serialize_to_tensor(data, group) |
|
size_list, tensor = _pad_to_largest_tensor(tensor, group) |
|
|
|
|
|
if rank == dst: |
|
max_size = max(size_list) |
|
tensor_list = [ |
|
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) |
|
for _ in size_list |
|
] |
|
dist.gather(tensor, tensor_list, dst=dst, group=group) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
return data_list |
|
else: |
|
dist.gather(tensor, [], dst=dst, group=group) |
|
return [] |
|
|
|
|
|
def shared_random_seed(): |
|
""" |
|
Returns: |
|
int: a random number that is the same across all workers. |
|
If workers need a shared RNG, they can use this shared seed to |
|
create one. |
|
All workers must call this function, otherwise it will deadlock. |
|
""" |
|
ints = np.random.randint(2 ** 31) |
|
all_ints = all_gather(ints) |
|
return all_ints[0] |
|
|
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Reduce the values in the dictionary from all processes so that process with rank |
|
0 has the reduced results. |
|
Args: |
|
input_dict (dict): inputs to be reduced. (values not necessarily tensors). |
|
average (bool): whether to do average or sum |
|
Returns: |
|
a dict with the same keys as input_dict, after reduction. |
|
""" |
|
|
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
input_dict_cuda_vals = {} |
|
for k, v in input_dict.items(): |
|
if type(v) == torch.Tensor: |
|
input_dict_cuda_vals[k] = v.to('cuda') |
|
else: |
|
input_dict_cuda_vals[k] = torch.tensor(v, device='cuda') |
|
|
|
names = [] |
|
values = [] |
|
for k, v in sorted(input_dict_cuda_vals.items()): |
|
names.append(k) |
|
values.append(v) |
|
values = torch.stack(values, dim=0) |
|
dist.reduce(values, dst=0) |
|
|
|
if dist.get_rank() == 0 and average: |
|
|
|
|
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|