|
""" Vision Transformer (ViT) in PyTorch |
|
|
|
A PyTorch implement of Vision Transformers as described in: |
|
|
|
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' |
|
- https://arxiv.org/abs/2010.11929 |
|
|
|
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` |
|
- https://arxiv.org/abs/2106.10270 |
|
|
|
The official jax code is released and available at https://github.com/google-research/vision_transformer |
|
|
|
Acknowledgments: |
|
* The paper authors for releasing code and weights, thanks! |
|
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out |
|
for some einops/einsum fun |
|
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT |
|
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert |
|
|
|
Hacked together by / Copyright 2020, Ross Wightman |
|
""" |
|
import math |
|
import logging |
|
from functools import partial |
|
from collections import OrderedDict |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
|
from timm.models.helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply, adapt_input_conv, checkpoint_seq |
|
from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_ |
|
from timm.models.registry import register_model |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 0, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
'vit_tiny_patch16_224': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), |
|
'vit_tiny_patch16_384': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'vit_small_patch32_224': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), |
|
'vit_small_patch32_384': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'vit_small_patch16_224': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), |
|
'vit_small_patch16_384': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'vit_base_patch32_224': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'), |
|
'vit_base_patch32_384': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'vit_base_patch16_224': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'), |
|
'vit_base_patch16_384': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'vit_base_patch8_224': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'), |
|
'vit_large_patch32_224': _cfg( |
|
url='', |
|
), |
|
'vit_large_patch32_384': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'vit_large_patch16_224': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'), |
|
'vit_large_patch16_384': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/' |
|
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
|
|
'vit_large_patch14_224': _cfg(url=''), |
|
'vit_huge_patch14_224': _cfg(url=''), |
|
'vit_giant_patch14_224': _cfg(url=''), |
|
'vit_gigantic_patch14_224': _cfg(url=''), |
|
|
|
|
|
|
|
'vit_tiny_patch16_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', |
|
num_classes=21843), |
|
'vit_small_patch32_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', |
|
num_classes=21843), |
|
'vit_small_patch16_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', |
|
num_classes=21843), |
|
'vit_base_patch32_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz', |
|
num_classes=21843), |
|
'vit_base_patch16_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', |
|
num_classes=21843), |
|
'vit_base_patch8_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', |
|
num_classes=21843), |
|
'vit_large_patch32_224_in21k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', |
|
num_classes=21843), |
|
'vit_large_patch16_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz', |
|
num_classes=21843), |
|
'vit_huge_patch14_224_in21k': _cfg( |
|
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz', |
|
hf_hub_id='timm/vit_huge_patch14_224_in21k', |
|
num_classes=21843), |
|
|
|
|
|
'vit_base_patch32_224_sam': _cfg( |
|
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'), |
|
'vit_base_patch16_224_sam': _cfg( |
|
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'), |
|
|
|
|
|
'vit_small_patch16_224_dino': _cfg( |
|
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), |
|
'vit_small_patch8_224_dino': _cfg( |
|
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), |
|
'vit_base_patch16_224_dino': _cfg( |
|
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), |
|
'vit_base_patch8_224_dino': _cfg( |
|
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), |
|
|
|
|
|
|
|
'vit_base_patch16_224_miil_in21k': _cfg( |
|
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth', |
|
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221, |
|
), |
|
'vit_base_patch16_224_miil': _cfg( |
|
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm' |
|
'/vit_base_patch16_224_1k_miil_84_4.pth', |
|
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', |
|
), |
|
|
|
'vit_base_patch16_rpn_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth'), |
|
|
|
|
|
'vit_base_patch32_plus_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95), |
|
'vit_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95), |
|
'vit_small_patch16_36x1_224': _cfg(url=''), |
|
'vit_small_patch16_18x2_224': _cfg(url=''), |
|
'vit_base_patch16_18x2_224': _cfg(url=''), |
|
} |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) |
|
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) |
|
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) |
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
|
|
class ResPostBlock(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.init_values = init_values |
|
|
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) |
|
self.norm1 = norm_layer(dim) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) |
|
self.norm2 = norm_layer(dim) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
|
|
if self.init_values is not None: |
|
nn.init.constant_(self.norm1.weight, self.init_values) |
|
nn.init.constant_(self.norm2.weight, self.init_values) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path1(self.norm1(self.attn(x))) |
|
x = x + self.drop_path2(self.norm2(self.mlp(x))) |
|
return x |
|
|
|
|
|
class ParallelBlock(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads, num_parallel=2, mlp_ratio=4., qkv_bias=False, init_values=None, |
|
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.num_parallel = num_parallel |
|
self.attns = nn.ModuleList() |
|
self.ffns = nn.ModuleList() |
|
for _ in range(num_parallel): |
|
self.attns.append(nn.Sequential(OrderedDict([ |
|
('norm', norm_layer(dim)), |
|
('attn', Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)), |
|
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), |
|
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) |
|
]))) |
|
self.ffns.append(nn.Sequential(OrderedDict([ |
|
('norm', norm_layer(dim)), |
|
('mlp', Mlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)), |
|
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), |
|
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) |
|
]))) |
|
|
|
def _forward_jit(self, x): |
|
x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0) |
|
x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0) |
|
return x |
|
|
|
@torch.jit.ignore |
|
def _forward(self, x): |
|
x = x + sum(attn(x) for attn in self.attns) |
|
x = x + sum(ffn(x) for ffn in self.ffns) |
|
return x |
|
|
|
def forward(self, x): |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
return self._forward_jit(x) |
|
else: |
|
return self._forward(x) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformer |
|
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` |
|
- https://arxiv.org/abs/2010.11929 |
|
""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', |
|
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None, |
|
class_token=True, no_embed_class=False, fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., |
|
weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=Block, |
|
return_hidden_state=False, mask_p=0): |
|
""" |
|
Args: |
|
img_size (int, tuple): input image size |
|
patch_size (int, tuple): patch size |
|
in_chans (int): number of input channels |
|
num_classes (int): number of classes for classification head |
|
global_pool (str): type of global pooling for final sequence (default: 'token') |
|
embed_dim (int): embedding dimension |
|
depth (int): depth of transformer |
|
num_heads (int): number of attention heads |
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim |
|
qkv_bias (bool): enable bias for qkv if True |
|
init_values: (float): layer-scale init values |
|
class_token (bool): use class token |
|
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None) |
|
drop_rate (float): dropout rate |
|
attn_drop_rate (float): attention dropout rate |
|
drop_path_rate (float): stochastic depth rate |
|
weight_init (str): weight init scheme |
|
embed_layer (nn.Module): patch embedding layer |
|
norm_layer: (nn.Module): normalization layer |
|
act_layer: (nn.Module): MLP activation layer |
|
""" |
|
super().__init__() |
|
assert global_pool in ('', 'avg', 'token') |
|
assert class_token or global_pool != 'token' |
|
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm |
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) |
|
act_layer = act_layer or nn.GELU |
|
|
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.num_features = self.embed_dim = embed_dim |
|
self.num_prefix_tokens = 1 if class_token else 0 |
|
self.no_embed_class = no_embed_class |
|
self.grad_checkpointing = False |
|
|
|
self.patch_embed = embed_layer( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None |
|
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens |
|
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
self.depth = depth |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
block_fn( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, init_values=init_values, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() |
|
|
|
|
|
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
if weight_init != 'skip': |
|
self.init_weights(weight_init) |
|
self.return_hidden_state = return_hidden_state |
|
self.mask_p = mask_p |
|
|
|
def init_weights(self, mode=''): |
|
assert mode in ('jax', 'jax_nlhb', 'moco', '') |
|
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. |
|
trunc_normal_(self.pos_embed, std=.02) |
|
if self.cls_token is not None: |
|
nn.init.normal_(self.cls_token, std=1e-6) |
|
named_apply(get_init_weights_vit(mode, head_bias), self) |
|
|
|
def _init_weights(self, m): |
|
|
|
init_weights_vit_timm(m) |
|
|
|
@torch.jit.ignore() |
|
def load_pretrained(self, checkpoint_path, prefix=''): |
|
_load_weights(self, checkpoint_path, prefix) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token', 'dist_token'} |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^cls_token|pos_embed|patch_embed', |
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes: int, global_pool=None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
assert global_pool in ('', 'avg', 'token') |
|
self.global_pool = global_pool |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def _pos_embed(self, x): |
|
if self.no_embed_class: |
|
|
|
|
|
x = x + self.pos_embed |
|
if self.cls_token is not None: |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
else: |
|
|
|
|
|
if self.cls_token is not None: |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
x = x + self.pos_embed |
|
return self.pos_drop(x) |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = self._pos_embed(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
if self.global_pool: |
|
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] |
|
x = self.fc_norm(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, external_features=None): |
|
all_hidden_states = () if self.return_hidden_state else None |
|
B = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
x = x + self.pos_embed[:,:x.size(1),:] |
|
x = self.pos_drop(x) |
|
|
|
if self.mask_p and self.training: |
|
num_samples = int((1-self.mask_p)*(x.shape[1]-1)) |
|
|
|
L = x.shape[1]-1 |
|
noise = torch.rand(x.shape[0], L, device=x.device) |
|
idx = torch.argsort(noise, dim=1) |
|
idx = idx[:, :num_samples] |
|
|
|
clst = x[:, :1, :] |
|
sampled_x = torch.gather(x[:, 1:, :], dim=1, index=idx.unsqueeze(-1).repeat(1, 1, x.shape[-1])) |
|
x = torch.cat((clst, sampled_x), dim=1) |
|
|
|
|
|
if external_features is not None: |
|
x = torch.cat((x, external_features), dim=1) |
|
|
|
for i,blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if self.return_hidden_state: |
|
all_hidden_states = all_hidden_states + (self.norm(x),) |
|
x = self.norm(x) |
|
|
|
if self.return_hidden_state: |
|
return x, all_hidden_states |
|
else: |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_weights_vit_timm(module: nn.Module, name: str = ''): |
|
""" ViT weight initialization, original timm impl (for reproducibility) """ |
|
if isinstance(module, nn.Linear): |
|
trunc_normal_(module.weight, std=.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif hasattr(module, 'init_weights'): |
|
module.init_weights() |
|
|
|
|
|
def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.): |
|
""" ViT weight initialization, matching JAX (Flax) impl """ |
|
if isinstance(module, nn.Linear): |
|
if name.startswith('head'): |
|
nn.init.zeros_(module.weight) |
|
nn.init.constant_(module.bias, head_bias) |
|
else: |
|
nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Conv2d): |
|
lecun_normal_(module.weight) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif hasattr(module, 'init_weights'): |
|
module.init_weights() |
|
|
|
|
|
def init_weights_vit_moco(module: nn.Module, name: str = ''): |
|
""" ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """ |
|
if isinstance(module, nn.Linear): |
|
if 'qkv' in name: |
|
|
|
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1])) |
|
nn.init.uniform_(module.weight, -val, val) |
|
else: |
|
nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif hasattr(module, 'init_weights'): |
|
module.init_weights() |
|
|
|
|
|
def get_init_weights_vit(mode='jax', head_bias: float = 0.): |
|
if 'jax' in mode: |
|
return partial(init_weights_vit_jax, head_bias=head_bias) |
|
elif 'moco' in mode: |
|
return init_weights_vit_moco |
|
else: |
|
return init_weights_vit_timm |
|
|
|
|
|
@torch.no_grad() |
|
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): |
|
""" Load weights from .npz checkpoints for official Google Brain Flax implementation |
|
""" |
|
import numpy as np |
|
|
|
def _n2p(w, t=True): |
|
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: |
|
w = w.flatten() |
|
if t: |
|
if w.ndim == 4: |
|
w = w.transpose([3, 2, 0, 1]) |
|
elif w.ndim == 3: |
|
w = w.transpose([2, 0, 1]) |
|
elif w.ndim == 2: |
|
w = w.transpose([1, 0]) |
|
return torch.from_numpy(w) |
|
|
|
w = np.load(checkpoint_path) |
|
if not prefix and 'opt/target/embedding/kernel' in w: |
|
prefix = 'opt/target/' |
|
|
|
if hasattr(model.patch_embed, 'backbone'): |
|
|
|
backbone = model.patch_embed.backbone |
|
stem_only = not hasattr(backbone, 'stem') |
|
stem = backbone if stem_only else backbone.stem |
|
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) |
|
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) |
|
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) |
|
if not stem_only: |
|
for i, stage in enumerate(backbone.stages): |
|
for j, block in enumerate(stage.blocks): |
|
bp = f'{prefix}block{i + 1}/unit{j + 1}/' |
|
for r in range(3): |
|
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) |
|
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) |
|
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) |
|
if block.downsample is not None: |
|
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) |
|
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) |
|
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) |
|
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) |
|
else: |
|
embed_conv_w = adapt_input_conv( |
|
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) |
|
model.patch_embed.proj.weight.copy_(embed_conv_w) |
|
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) |
|
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) |
|
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) |
|
if pos_embed_w.shape != model.pos_embed.shape: |
|
pos_embed_w = resize_pos_embed( |
|
pos_embed_w, |
|
model.pos_embed, |
|
getattr(model, 'num_prefix_tokens', 1), |
|
model.patch_embed.grid_size |
|
) |
|
model.pos_embed.copy_(pos_embed_w) |
|
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) |
|
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) |
|
if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: |
|
model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) |
|
model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) |
|
|
|
|
|
|
|
|
|
for i, block in enumerate(model.blocks.children()): |
|
block_prefix = f'{prefix}Transformer/encoderblock_{i}/' |
|
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' |
|
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) |
|
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) |
|
block.attn.qkv.weight.copy_(torch.cat([ |
|
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) |
|
block.attn.qkv.bias.copy_(torch.cat([ |
|
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) |
|
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) |
|
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) |
|
for r in range(2): |
|
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) |
|
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) |
|
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) |
|
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) |
|
|
|
|
|
def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()): |
|
|
|
|
|
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) |
|
ntok_new = posemb_new.shape[1] |
|
if num_prefix_tokens: |
|
posemb_prefix, posemb_grid = posemb[:, :num_prefix_tokens], posemb[0, num_prefix_tokens:] |
|
ntok_new -= num_prefix_tokens |
|
else: |
|
posemb_prefix, posemb_grid = posemb[:, :0], posemb[0] |
|
gs_old = int(math.sqrt(len(posemb_grid))) |
|
if not len(gs_new): |
|
gs_new = [int(math.sqrt(ntok_new))] * 2 |
|
assert len(gs_new) >= 2 |
|
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) |
|
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) |
|
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False) |
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) |
|
posemb = torch.cat([posemb_prefix, posemb_grid], dim=1) |
|
return posemb |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model, adapt_layer_scale=False): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
import re |
|
out_dict = {} |
|
if 'model' in state_dict: |
|
|
|
state_dict = state_dict['model'] |
|
|
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k and len(v.shape) < 4: |
|
|
|
O, I, H, W = model.patch_embed.proj.weight.shape |
|
v = v.reshape(O, -1, H, W) |
|
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: |
|
|
|
v = resize_pos_embed( |
|
v, |
|
model.pos_embed, |
|
getattr(model, 'num_prefix_tokens', 1), |
|
model.patch_embed.grid_size |
|
) |
|
elif adapt_layer_scale and 'gamma_' in k: |
|
|
|
k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k) |
|
elif 'pre_logits' in k: |
|
|
|
continue |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_vision_transformer(variant, pretrained=False, **kwargs): |
|
if kwargs.get('features_only', None): |
|
raise RuntimeError('features_only not implemented for Vision Transformer models.') |
|
|
|
pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None)) |
|
|
|
|
|
model = build_model_with_cfg( |
|
VisionTransformer, variant, pretrained, |
|
pretrained_cfg=pretrained_cfg, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
pretrained_custom_load='npz' in pretrained_cfg['url'], |
|
**kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_tiny_patch16_224(pretrained=False, **kwargs): |
|
""" ViT-Tiny (Vit-Ti/16) |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) |
|
model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_tiny_patch16_384(pretrained=False, **kwargs): |
|
""" ViT-Tiny (Vit-Ti/16) @ 384x384. |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) |
|
model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch32_224(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/32) |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch32_384(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/32) at 384x384. |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch16_224(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/16) |
|
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch16_384(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/16) |
|
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch32_224(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch32_384(pretrained=False, **kwargs): |
|
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_224(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_384(pretrained=False, **kwargs): |
|
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch8_224(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_large_patch32_224(pretrained=False, **kwargs): |
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_large_patch32_384(pretrained=False, **kwargs): |
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_large_patch16_224(pretrained=False, **kwargs): |
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_large_patch16_384(pretrained=False, **kwargs): |
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_large_patch14_224(pretrained=False, **kwargs): |
|
""" ViT-Large model (ViT-L/14) |
|
""" |
|
model_kwargs = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_huge_patch14_224(pretrained=False, **kwargs): |
|
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). |
|
""" |
|
model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_giant_patch14_224(pretrained=False, **kwargs): |
|
""" ViT-Giant model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 |
|
""" |
|
model_kwargs = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_gigantic_patch14_224(pretrained=False, **kwargs): |
|
""" ViT-Gigantic model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 |
|
""" |
|
model_kwargs = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_tiny_patch16_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Tiny (Vit-Ti/16). |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) |
|
model = _create_vision_transformer('vit_tiny_patch16_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch32_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/16) |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch32_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch16_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/16) |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch16_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch32_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch8_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Base model (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer |
|
""" |
|
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch8_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_large_patch32_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_large_patch16_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs): |
|
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). |
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. |
|
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights |
|
""" |
|
model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs) |
|
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_224_sam(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_224_sam', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch32_224_sam(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548 |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch32_224_sam', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch16_224_dino(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/16) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch16_224_dino', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch8_224_dino(pretrained=False, **kwargs): |
|
""" ViT-Small (ViT-S/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 |
|
""" |
|
model_kwargs = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch8_224_dino', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_224_dino(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/16) /w DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_224_dino', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch8_224_dino(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294 |
|
""" |
|
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch8_224_dino', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_224_miil_in21k', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_224_miil(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
|
|
|
|
@register_model |
|
def vit_base_patch32_plus_256(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/32+) |
|
""" |
|
model_kwargs = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch32_plus_256', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_plus_240(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/16+) |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_plus_240', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_rpn_224(pretrained=False, **kwargs): |
|
""" ViT-Base (ViT-B/16) w/ residual post-norm |
|
""" |
|
model_kwargs = dict( |
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5, class_token=False, |
|
block_fn=ResPostBlock, global_pool=kwargs.pop('global_pool', 'avg'), **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_rpn_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch16_36x1_224(pretrained=False, **kwargs): |
|
""" ViT-Base w/ LayerScale + 36 x 1 (36 block serial) config. Experimental, may remove. |
|
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 |
|
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow. |
|
""" |
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=36, num_heads=6, init_values=1e-5, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch16_36x1_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_small_patch16_18x2_224(pretrained=False, **kwargs): |
|
""" ViT-Small w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove. |
|
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 |
|
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow. |
|
""" |
|
model_kwargs = dict( |
|
patch_size=16, embed_dim=384, depth=18, num_heads=6, init_values=1e-5, block_fn=ParallelBlock, **kwargs) |
|
model = _create_vision_transformer('vit_small_patch16_18x2_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_18x2_224(pretrained=False, **kwargs): |
|
""" ViT-Base w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove. |
|
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 |
|
""" |
|
model_kwargs = dict( |
|
patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelBlock, **kwargs) |
|
model = _create_vision_transformer('vit_base_patch16_18x2_224', pretrained=pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
|