eP-ALM / models /.ipynb_checkpoints /visopt-checkpoint.py
mshukor
init
3eb682b
raw
history blame
6.05 kB
import re
import torch
from torch import nn
from torchvision import transforms
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from accelerate import Accelerator
from models.opt import OPTModel, OPTConfig, OPTForCausalLM
import models.vit
from PIL import Image
import json
import numpy as np
import torch.nn.functional as F
from transformers.tokenization_utils_base import BatchEncoding
def rank_answer(model, image, question_input, answer_ids, answer_atts, k, tokenizer):
num_ques = question_input.input_ids.size(0)
start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
start_ids = torch.cat((question_input.input_ids, start_ids), dim=1)
attention_mask = torch.cat((question_input.attention_mask, torch.ones((num_ques, 1)).to(question_input.attention_mask.device)), dim=1)
start_input = {'input_ids': start_ids, 'attention_mask': attention_mask}
start_input = BatchEncoding(start_input)
start_output = model(image, start_input, return_dict = True, mode='evaluate')
logits = start_output.logits[:,-1,:] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:,1]
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids,dim=0)
input_atts = torch.cat(input_atts,dim=0)
start_ids = tile(start_ids, 0, k)
attention_mask = tile(attention_mask, 0, k)
image = tile(image, 0, k)
input_ids = torch.cat((start_ids, input_ids), dim=1) # include the <s> ?
input_atts = torch.cat((attention_mask, input_atts), dim=1)
targets_ids = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100)
# repeat encoder's output for top-k answers
inputs = {'input_ids': input_ids, 'attention_mask': input_atts}
inputs = BatchEncoding(inputs)
output = model(image, inputs, labels = targets_ids, return_dict = True, mode='train', reduction='none')
answer_loss = output.loss
answer_loss = answer_loss.view(input_ids.size(0),-1)
# topk_prob: first token probability
topk_probs = topk_probs.view(-1,1)
log_probs = torch.cat([topk_probs.log(), -answer_loss],dim=1)
# re-calculate log probabilities for the answer sequences using chain rule
log_probs_sum = log_probs.sum(1)
log_probs_sum = log_probs_sum.view(num_ques,k)
topk_probs = F.softmax(log_probs_sum, dim=-1)
# get top-k after re-ranking
topk_probs, rerank_id = topk_probs.topk(k,dim=1)
topk_ids = torch.gather(topk_ids, 1, rerank_id)
return topk_ids, topk_probs
def tile(x, dim, n_tile):
init_dim = x.size(dim)
repeat_idx = [1] * x.dim()
repeat_idx[dim] = n_tile
x = x.repeat(*(repeat_idx))
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
return torch.index_select(x, dim, order_index.to(x.device))
class VisOPT(nn.Module):
def __init__(self,
opt_model_name = 'facebook/opt-350m',
vision_model_name = 'vit_base_patch16_224',
use_vis_prefix = True,
start_layer_idx = 11,
end_layer_idx = 23,
return_hidden_state_vision = True,
injected_hidden_states = 1,
):
super().__init__()
print("Loading VisOPT ...")
# text
config_opt = AutoConfig.from_pretrained(opt_model_name)
config_opt.use_vis_prefix = use_vis_prefix
config_opt.start_layer_idx = start_layer_idx
config_opt.end_layer_idx = end_layer_idx
print(config_opt)
print("Loading: ", opt_model_name)
self.model_text = OPTForCausalLM.from_pretrained(opt_model_name, config=config_opt)
# vision
print("Loading: ", vision_model_name)
vision_func = getattr(models.vit, vision_model_name)
self.model_vision = vision_func(pretrained=True, return_hidden_state=return_hidden_state_vision)
# connector
self.injected_hidden_states = injected_hidden_states
vis_dim = self.model_vision.embed_dim
text_dim = config_opt.hidden_size
self.connector = nn.ModuleList([nn.Linear(vis_dim, text_dim) for i in range(injected_hidden_states)])
def forward(self, image=None, text=None, mode='generate', return_dict=True, labels=None, reduction='mean', **generation_kwargs):
if image is not None:
image_embed, image_feat = self.model_vision(image, external_features=None)
image_feat = list(image_feat)
image_feat = image_feat[-self.injected_hidden_states:]
## only cls token, we can think of somthing else
for i in range(1, self.injected_hidden_states + 1):
image_feat[-i] = self.connector[-i](image_feat[-i][:, 0, :].unsqueeze(1))
else:
image_feat = None
# image_feat = None
if mode == 'train' or mode == 'evaluate':
text_output = self.model_text(input_ids=text.input_ids, attention_mask=text.attention_mask, return_dict=return_dict, vis_prefix=image_feat, labels = labels, reduction=reduction)
return text_output
elif mode == 'generate':
print('generation')
gen = self.model_text.generate(input_ids=text.input_ids, vis_prefix=image_feat, **generation_kwargs)
return gen