mshukor
init
3eb682b
raw
history blame
2.92 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Learning rate policy."""
import math
def get_lr_at_epoch(cfg, cur_epoch):
"""
Retrieve the learning rate of the current epoch with the option to perform
warm up in the beginning of the training stage.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
cur_epoch (float): the number of epoch of the current training stage.
"""
lr = get_lr_func(cfg.SOLVER.LR_POLICY)(cfg, cur_epoch)
# Perform warm up.
if cur_epoch < cfg.SOLVER.WARMUP_EPOCHS:
lr_start = cfg.SOLVER.WARMUP_START_LR
lr_end = get_lr_func(cfg.SOLVER.LR_POLICY)(
cfg, cfg.SOLVER.WARMUP_EPOCHS
)
alpha = (lr_end - lr_start) / cfg.SOLVER.WARMUP_EPOCHS
lr = cur_epoch * alpha + lr_start
return lr
def lr_func_cosine(cfg, cur_epoch):
"""
Retrieve the learning rate to specified values at specified epoch with the
cosine learning rate schedule. Details can be found in:
Ilya Loshchilov, and Frank Hutter
SGDR: Stochastic Gradient Descent With Warm Restarts.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
cur_epoch (float): the number of epoch of the current training stage.
"""
assert cfg.SOLVER.COSINE_END_LR < cfg.SOLVER.BASE_LR
return (
cfg.SOLVER.COSINE_END_LR
+ (cfg.SOLVER.BASE_LR - cfg.SOLVER.COSINE_END_LR)
* (math.cos(math.pi * cur_epoch / cfg.SOLVER.MAX_EPOCH) + 1.0)
* 0.5
)
def lr_func_steps_with_relative_lrs(cfg, cur_epoch):
"""
Retrieve the learning rate to specified values at specified epoch with the
steps with relative learning rate schedule.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
cur_epoch (float): the number of epoch of the current training stage.
"""
ind = get_step_index(cfg, cur_epoch)
return cfg.SOLVER.LRS[ind] * cfg.SOLVER.BASE_LR
def get_step_index(cfg, cur_epoch):
"""
Retrieves the lr step index for the given epoch.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
cur_epoch (float): the number of epoch of the current training stage.
"""
steps = cfg.SOLVER.STEPS + [cfg.SOLVER.MAX_EPOCH]
for ind, step in enumerate(steps): # NoQA
if cur_epoch < step:
break
return ind - 1
def get_lr_func(lr_policy):
"""
Given the configs, retrieve the specified lr policy function.
Args:
lr_policy (string): the learning rate policy to use for the job.
"""
policy = "lr_func_" + lr_policy
if policy not in globals():
raise NotImplementedError("Unknown LR policy: {}".format(lr_policy))
else:
return globals()[policy]