|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from functools import partial |
|
import math |
|
import warnings |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
from timesformer.models.vit_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timesformer.models.helpers import load_pretrained |
|
from timesformer.models.vit_utils import DropPath, to_2tuple, trunc_normal_ |
|
|
|
|
|
from torch import einsum |
|
from einops import rearrange, reduce, repeat |
|
import torchvision |
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'timesformer_vit_base_patch16_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
), |
|
} |
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., with_qkv=True): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
self.with_qkv = with_qkv |
|
if self.with_qkv: |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
if self.with_qkv: |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
else: |
|
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
q, k, v = qkv, qkv, qkv |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
if self.with_qkv: |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0.1, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attention_type='divided_space_time'): |
|
super().__init__() |
|
self.attention_type = attention_type |
|
assert(attention_type in ['divided_space_time', 'space_only','joint_space_time']) |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
|
|
if self.attention_type == 'divided_space_time': |
|
self.temporal_norm1 = norm_layer(dim) |
|
self.temporal_attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
self.temporal_fc = nn.Linear(dim, dim) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
def forward(self, x, B, T, W): |
|
num_spatial_tokens = (x.size(1) - 1) // T |
|
H = num_spatial_tokens // W |
|
|
|
if self.attention_type in ['space_only', 'joint_space_time']: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
elif self.attention_type == 'divided_space_time': |
|
|
|
xt = x[:,1:,:] |
|
xt = rearrange(xt, 'b (h w t) m -> (b h w) t m',b=B,h=H,w=W,t=T) |
|
res_temporal = self.drop_path(self.temporal_attn(self.temporal_norm1(xt))) |
|
res_temporal = rearrange(res_temporal, '(b h w) t m -> b (h w t) m',b=B,h=H,w=W,t=T) |
|
res_temporal = self.temporal_fc(res_temporal) |
|
xt = x[:,1:,:] + res_temporal |
|
|
|
|
|
init_cls_token = x[:,0,:].unsqueeze(1) |
|
cls_token = init_cls_token.repeat(1, T, 1) |
|
cls_token = rearrange(cls_token, 'b t m -> (b t) m',b=B,t=T).unsqueeze(1) |
|
xs = xt |
|
xs = rearrange(xs, 'b (h w t) m -> (b t) (h w) m',b=B,h=H,w=W,t=T) |
|
xs = torch.cat((cls_token, xs), 1) |
|
res_spatial = self.drop_path(self.attn(self.norm1(xs))) |
|
|
|
|
|
cls_token = res_spatial[:,0,:] |
|
cls_token = rearrange(cls_token, '(b t) m -> b t m',b=B,t=T) |
|
cls_token = torch.mean(cls_token,1,True) |
|
res_spatial = res_spatial[:,1:,:] |
|
res_spatial = rearrange(res_spatial, '(b t) (h w) m -> b (h w t) m',b=B,h=H,w=W,t=T) |
|
res = res_spatial |
|
x = xt |
|
|
|
|
|
x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
B, C, T, H, W = x.shape |
|
x = rearrange(x, 'b c t h w -> (b t) c h w') |
|
x = self.proj(x) |
|
W = x.size(-1) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x, T, W |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformere |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0.1, hybrid_backbone=None, norm_layer=nn.LayerNorm, |
|
num_frames=8, attention_type='divided_space_time', dropout=0., |
|
return_hidden_state=False): |
|
super().__init__() |
|
self.attention_type = attention_type |
|
self.depth = depth |
|
self.dropout = nn.Dropout(dropout) |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches+1, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
if self.attention_type != 'space_only': |
|
self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) |
|
self.time_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, attention_type=self.attention_type) |
|
for i in range(self.depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
|
|
if self.attention_type == 'divided_space_time': |
|
i = 0 |
|
for m in self.blocks.modules(): |
|
m_str = str(m) |
|
if 'Block' in m_str: |
|
if i > 0: |
|
nn.init.constant_(m.temporal_fc.weight, 0) |
|
nn.init.constant_(m.temporal_fc.bias, 0) |
|
i += 1 |
|
print("Load custom timesformer") |
|
|
|
self.return_hidden_state = return_hidden_state |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token', 'time_embed'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x, attention_type=None): |
|
all_hidden_states = () if self.return_hidden_state else None |
|
B = x.shape[0] |
|
x, T, W = self.patch_embed(x) |
|
cls_tokens = self.cls_token.expand(x.size(0), -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
if x.size(1) != self.pos_embed.size(1): |
|
pos_embed = self.pos_embed |
|
cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1) |
|
other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2) |
|
P = int(other_pos_embed.size(2) ** 0.5) |
|
H = x.size(1) // W |
|
other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P) |
|
new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode='nearest') |
|
new_pos_embed = new_pos_embed.flatten(2) |
|
new_pos_embed = new_pos_embed.transpose(1, 2) |
|
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) |
|
x = x + new_pos_embed |
|
else: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
if attention_type is None: |
|
attention_type = self.attention_type |
|
|
|
if attention_type != 'space_only': |
|
cls_tokens = x[:B, 0, :].unsqueeze(1) |
|
x = x[:,1:] |
|
x = rearrange(x, '(b t) n m -> (b n) t m',b=B,t=T) |
|
|
|
if T != self.time_embed.size(1): |
|
time_embed = self.time_embed.transpose(1, 2) |
|
new_time_embed = F.interpolate(time_embed, size=(T), mode='nearest') |
|
new_time_embed = new_time_embed.transpose(1, 2) |
|
x = x + new_time_embed |
|
else: |
|
x = x + self.time_embed |
|
x = self.time_drop(x) |
|
x = rearrange(x, '(b n) t m -> b (n t) m',b=B,t=T) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
for blk in self.blocks: |
|
x = blk(x, B, T, W) |
|
|
|
if self.return_hidden_state: |
|
all_hidden_states = all_hidden_states + (self.norm(x),) |
|
|
|
|
|
if attention_type == 'space_only': |
|
x = rearrange(x, '(b t) n m -> b t n m',b=B,t=T) |
|
x = torch.mean(x, 1) |
|
|
|
x = self.norm(x) |
|
|
|
if self.return_hidden_state: |
|
return x, all_hidden_states |
|
else: |
|
return x |
|
|
|
def forward(self, x, attention_type=None): |
|
x = self.forward_features(x, attention_type=attention_type) |
|
return x |
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
if v.shape[-1] != patch_size: |
|
patch_size = v.shape[-1] |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
class timesformer_vit_base_patch16_224(nn.Module): |
|
def __init__(self, cfg, **kwargs): |
|
super(timesformer_vit_base_patch16_224, self).__init__() |
|
self.pretrained=True |
|
patch_size = 16 |
|
self.model = VisionTransformer(img_size=cfg.DATA.TRAIN_CROP_SIZE, |
|
num_classes=cfg.MODEL.NUM_CLASSES, patch_size=patch_size, |
|
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=cfg.DATA.NUM_FRAMES, attention_type=cfg.TIMESFORMER.ATTENTION_TYPE, **kwargs) |
|
|
|
self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE |
|
self.model.default_cfg = default_cfgs['timesformer_vit_base_patch16_224'] |
|
self.num_patches = (cfg.DATA.TRAIN_CROP_SIZE // patch_size) * (cfg.DATA.TRAIN_CROP_SIZE // patch_size) |
|
pretrained_model=cfg.TIMESFORMER.PRETRAINED_MODEL |
|
if self.pretrained: |
|
load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=cfg.DATA.TRAIN_CROP_SIZE, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) |
|
|
|
def forward(self, x): |
|
x = self.model(x) |
|
return x |
|
|
|
|
|
class TimeSformer(nn.Module): |
|
def __init__(self, img_size=224, patch_size=16, num_classes=400, num_frames=8, |
|
attention_type='divided_space_time', embed_dim=768, pretrained_model='', |
|
audio_as_image=True, space_only_for_images=False, **kwargs): |
|
super(TimeSformer, self).__init__() |
|
self.pretrained=True |
|
self.model = VisionTransformer(img_size=img_size, num_classes=num_classes, |
|
patch_size=patch_size, embed_dim=embed_dim, depth=12, num_heads=12, mlp_ratio=4, |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, num_frames=num_frames, |
|
attention_type=attention_type, **kwargs) |
|
self.num_frames = num_frames |
|
self.embed_dim = embed_dim |
|
self.attention_type = attention_type |
|
self.model.default_cfg = default_cfgs['timesformer_vit_base_patch'+str(patch_size)+'_224'] |
|
self.num_patches = (img_size // patch_size) * (img_size // patch_size) |
|
self.img_size = img_size |
|
self.audio_as_image = audio_as_image |
|
self.space_only_for_images = space_only_for_images |
|
if self.pretrained: |
|
load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=img_size, num_frames=num_frames, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) |
|
def forward(self, x, external_features=None): |
|
|
|
if x.ndim == 4: |
|
if not self.space_only_for_images: |
|
x = x.unsqueeze(2).expand(-1, -1, self.num_frames, -1, -1) |
|
else: |
|
x = x.unsqueeze(2) |
|
if x.ndim == 3: |
|
B, H, W = x.shape |
|
if self.audio_as_image: |
|
x = x.unsqueeze(1).expand(-1, 3, -1, -1) |
|
x = torchvision.transforms.functional.resize(x, (self.img_size, self.img_size)) |
|
if not self.space_only_for_images: |
|
x = x.unsqueeze(2).expand(-1, -1, self.num_frames, -1, -1) |
|
else: |
|
x = x.unsqueeze(2) |
|
else: |
|
if H != W: |
|
if H > W: |
|
w = H/self.num_frames |
|
|
|
|
|
a = w - W |
|
x = x.unfold(1, W, int(W+a)) |
|
x = x.unsqueeze(1).expand(-1, 3, -1, -1, -1) |
|
x = [torchvision.transforms.functional.resize(x[:, :, i, :, :], (self.img_size, self.img_size)).unsqueeze(2) for i in range(self.num_frames)] |
|
x = torch.cat(x, dim=2) |
|
|
|
x = (x - x.min()) / (x.max() - x.min()) |
|
|
|
if x.shape[-3] == 1 and self.space_only_for_images: |
|
attention_type = 'space_only' |
|
else: |
|
attention_type = None |
|
x = self.model(x, attention_type=attention_type) |
|
|
|
|
|
return x |
|
|