|
""" Step Scheduler |
|
|
|
Basic step LR schedule with warmup, noise. |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import math |
|
import torch |
|
|
|
from .scheduler import Scheduler |
|
|
|
|
|
class StepLRScheduler(Scheduler): |
|
""" |
|
""" |
|
|
|
def __init__(self, |
|
optimizer: torch.optim.Optimizer, |
|
decay_t: float, |
|
decay_rate: float = 1., |
|
warmup_t=0, |
|
warmup_lr_init=0, |
|
t_in_epochs=True, |
|
noise_range_t=None, |
|
noise_pct=0.67, |
|
noise_std=1.0, |
|
noise_seed=42, |
|
initialize=True, |
|
) -> None: |
|
super().__init__( |
|
optimizer, param_group_field="lr", |
|
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, |
|
initialize=initialize) |
|
|
|
self.decay_t = decay_t |
|
self.decay_rate = decay_rate |
|
self.warmup_t = warmup_t |
|
self.warmup_lr_init = warmup_lr_init |
|
self.t_in_epochs = t_in_epochs |
|
if self.warmup_t: |
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] |
|
super().update_groups(self.warmup_lr_init) |
|
else: |
|
self.warmup_steps = [1 for _ in self.base_values] |
|
|
|
def _get_lr(self, t): |
|
if t < self.warmup_t: |
|
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] |
|
else: |
|
lrs = [v * (self.decay_rate ** (t // self.decay_t)) for v in self.base_values] |
|
return lrs |
|
|
|
def get_epoch_values(self, epoch: int): |
|
if self.t_in_epochs: |
|
return self._get_lr(epoch) |
|
else: |
|
return None |
|
|
|
def get_update_values(self, num_updates: int): |
|
if not self.t_in_epochs: |
|
return self._get_lr(num_updates) |
|
else: |
|
return None |
|
|