mshukor
init
3eb682b
raw
history blame
No virus
6.53 kB
# Copyright 2020 Ross Wightman
# Various utility functions
import torch
import torch.nn as nn
from functools import partial
import math
import warnings
import torch.nn.functional as F
from timesformer.models.helpers import load_pretrained
from .build import MODEL_REGISTRY
from itertools import repeat
from collections import abc as container_abcs
# from torch._six import container_abcs
DEFAULT_CROP_PCT = 0.875
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255)
IMAGENET_DPN_STD = tuple([1 / (.0167 * 255)] * 3)
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, container_abcs.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
# Calculate symmetric padding for a convolution
def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int:
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding
def get_padding_value(padding, kernel_size, **kwargs):
dynamic = False
if isinstance(padding, str):
# for any string padding, the padding will be calculated for you, one of three ways
padding = padding.lower()
if padding == 'same':
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
if is_static_pad(kernel_size, **kwargs):
# static case, no extra overhead
padding = get_padding(kernel_size, **kwargs)
else:
# dynamic 'SAME' padding, has runtime/GPU memory overhead
padding = 0
dynamic = True
elif padding == 'valid':
# 'VALID' padding, same as padding=0
padding = 0
else:
# Default to PyTorch style 'same'-ish symmetric padding
padding = get_padding(kernel_size, **kwargs)
return padding, dynamic
# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
def get_same_padding(x: int, k: int, s: int, d: int):
return max((int(math.ceil(x // s)) - 1) * s + (k - 1) * d + 1 - x, 0)
# Can SAME padding for given args be done statically?
def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_):
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
# Dynamically pad input x with 'SAME' padding for conv with specified args
#def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0):
def pad_same(x, k, s, d=(1, 1), value= 0):
ih, iw = x.size()[-2:]
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1])
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], value=value)
return x
def adaptive_pool_feat_mult(pool_type='avg'):
if pool_type == 'catavgmax':
return 2
else:
return 1
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)