|
""" Optimizer Factory w/ Custom Weight Decay |
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
from torch import optim as optim |
|
|
|
from .adafactor import Adafactor |
|
from .adahessian import Adahessian |
|
from .adamp import AdamP |
|
from .lookahead import Lookahead |
|
from .nadam import Nadam |
|
from .novograd import NovoGrad |
|
from .nvnovograd import NvNovoGrad |
|
from .radam import RAdam |
|
from .rmsprop_tf import RMSpropTF |
|
from .sgdp import SGDP |
|
|
|
try: |
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD |
|
has_apex = True |
|
except ImportError: |
|
has_apex = False |
|
|
|
|
|
def add_weight_decay(model, weight_decay=1e-5, skip_list=()): |
|
decay = [] |
|
no_decay = [] |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: |
|
no_decay.append(param) |
|
else: |
|
decay.append(param) |
|
return [ |
|
{'params': no_decay, 'weight_decay': 0.}, |
|
{'params': decay, 'weight_decay': weight_decay}] |
|
|
|
|
|
def create_optimizer(args, model, filter_bias_and_bn=True, config=None): |
|
opt_lower = args.opt.lower() |
|
weight_decay = args.weight_decay |
|
|
|
customized_lr = config.get('customized_lr', False) |
|
prompt_lr = config.get('prompt_lr', args.lr) |
|
vis_lr = config.get('vis_lr', args.lr) |
|
text_lr = config.get('text_lr', args.lr) |
|
connector_lr = config.get('connector_lr', args.lr) |
|
adapter_lr = config.get('adapter_lr', args.lr) |
|
|
|
if customized_lr: |
|
parameters = [] |
|
targets = ['connector', 'model_vision', 'model_text', 'prompt'] |
|
|
|
|
|
|
|
|
|
|
|
params = {'connector': [], 'model_vision': [], 'model_text': [], 'prompt': [], 'other': []} |
|
for kv in model.named_parameters(): |
|
if 'connector' in kv[0].split('.')[0]: |
|
params['connector'].append(kv[1]) |
|
elif 'model_vision' in kv[0].split('.')[0]: |
|
params['model_vision'].append(kv[1]) |
|
elif 'model_text' in kv[0].split('.')[0]: |
|
params['model_text'].append(kv[1]) |
|
elif 'prompt' in kv[0].split('.')[0]: |
|
params['prompt'].append(kv[1]) |
|
else: |
|
params['other'].append(kv[1]) |
|
|
|
|
|
parameters.append({'params': params['connector'], 'lr': connector_lr, 'weight_decay': weight_decay}) |
|
print('connector', len(params['connector'])) |
|
|
|
|
|
parameters.append({'params': params['model_vision'], 'lr': vis_lr, 'weight_decay': weight_decay}) |
|
print('model_vision', len(params['model_vision'])) |
|
|
|
|
|
parameters.append({'params': params['model_text'], 'lr': text_lr, 'weight_decay': weight_decay}) |
|
print('model_text', len(params['model_text'])) |
|
|
|
parameters.append({'params': params['prompt'], 'lr': prompt_lr, 'weight_decay': weight_decay}) |
|
print('prompt_lr', len(params['prompt'])) |
|
|
|
|
|
parameters.append({'params': params['other']}) |
|
print('other', len(params['other'])) |
|
print(connector_lr, vis_lr, text_lr, prompt_lr, "optim") |
|
|
|
elif config.get('adapter_lr', False) and config.get('prompt_lr', False): |
|
adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]] |
|
promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]] |
|
|
|
other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0] and 'prompt' not in kv[0]] |
|
parameters = [ |
|
{'params': other_params}, |
|
{'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay}, |
|
{'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay} |
|
] |
|
|
|
elif config.get('adapter_lr', False): |
|
adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]] |
|
other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0]] |
|
parameters = [ |
|
{'params': other_params}, |
|
{'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay} |
|
] |
|
|
|
elif config.get('prompt_lr', False): |
|
promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]] |
|
other_params = [kv[1] for kv in model.named_parameters() if 'prompt' not in kv[0]] |
|
parameters = [ |
|
{'params': other_params}, |
|
{'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay} |
|
] |
|
elif weight_decay and filter_bias_and_bn: |
|
skip = {} |
|
if hasattr(model, 'no_weight_decay'): |
|
skip = model.no_weight_decay() |
|
parameters = add_weight_decay(model, weight_decay, skip) |
|
weight_decay = 0. |
|
else: |
|
parameters = model.parameters() |
|
|
|
if 'fused' in opt_lower: |
|
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' |
|
|
|
opt_args = dict(lr=args.lr, weight_decay=weight_decay) |
|
if hasattr(args, 'opt_eps') and args.opt_eps is not None: |
|
opt_args['eps'] = args.opt_eps |
|
if hasattr(args, 'opt_betas') and args.opt_betas is not None: |
|
opt_args['betas'] = args.opt_betas |
|
if hasattr(args, 'opt_args') and args.opt_args is not None: |
|
opt_args.update(args.opt_args) |
|
|
|
opt_split = opt_lower.split('_') |
|
opt_lower = opt_split[-1] |
|
if opt_lower == 'sgd' or opt_lower == 'nesterov': |
|
opt_args.pop('eps', None) |
|
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'momentum': |
|
opt_args.pop('eps', None) |
|
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) |
|
elif opt_lower == 'adam': |
|
optimizer = optim.Adam(parameters, **opt_args) |
|
elif opt_lower == 'adamw': |
|
optimizer = optim.AdamW(parameters, **opt_args) |
|
elif opt_lower == 'nadam': |
|
optimizer = Nadam(parameters, **opt_args) |
|
elif opt_lower == 'radam': |
|
optimizer = RAdam(parameters, **opt_args) |
|
elif opt_lower == 'adamp': |
|
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) |
|
elif opt_lower == 'sgdp': |
|
optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'adadelta': |
|
optimizer = optim.Adadelta(parameters, **opt_args) |
|
elif opt_lower == 'adafactor': |
|
if not args.lr: |
|
opt_args['lr'] = None |
|
optimizer = Adafactor(parameters, **opt_args) |
|
elif opt_lower == 'adahessian': |
|
optimizer = Adahessian(parameters, **opt_args) |
|
elif opt_lower == 'rmsprop': |
|
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) |
|
elif opt_lower == 'rmsproptf': |
|
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) |
|
elif opt_lower == 'novograd': |
|
optimizer = NovoGrad(parameters, **opt_args) |
|
elif opt_lower == 'nvnovograd': |
|
optimizer = NvNovoGrad(parameters, **opt_args) |
|
elif opt_lower == 'fusedsgd': |
|
opt_args.pop('eps', None) |
|
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'fusedmomentum': |
|
opt_args.pop('eps', None) |
|
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) |
|
elif opt_lower == 'fusedadam': |
|
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) |
|
elif opt_lower == 'fusedadamw': |
|
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) |
|
elif opt_lower == 'fusedlamb': |
|
optimizer = FusedLAMB(parameters, **opt_args) |
|
elif opt_lower == 'fusednovograd': |
|
opt_args.setdefault('betas', (0.95, 0.98)) |
|
optimizer = FusedNovoGrad(parameters, **opt_args) |
|
else: |
|
assert False and "Invalid optimizer" |
|
raise ValueError |
|
|
|
if len(opt_split) > 1: |
|
if opt_split[0] == 'lookahead': |
|
optimizer = Lookahead(optimizer) |
|
|
|
return optimizer |
|
|