|
""" |
|
AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py |
|
|
|
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 |
|
Code: https://github.com/clovaai/AdamP |
|
|
|
Copyright (c) 2020-present NAVER Corp. |
|
MIT license |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.optim.optimizer import Optimizer, required |
|
import math |
|
|
|
class AdamP(Optimizer): |
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False): |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, |
|
delta=delta, wd_ratio=wd_ratio, nesterov=nesterov) |
|
super(AdamP, self).__init__(params, defaults) |
|
|
|
def _channel_view(self, x): |
|
return x.view(x.size(0), -1) |
|
|
|
def _layer_view(self, x): |
|
return x.view(1, -1) |
|
|
|
def _cosine_similarity(self, x, y, eps, view_func): |
|
x = view_func(x) |
|
y = view_func(y) |
|
|
|
x_norm = x.norm(dim=1).add_(eps) |
|
y_norm = y.norm(dim=1).add_(eps) |
|
dot = (x * y).sum(dim=1) |
|
|
|
return dot.abs() / x_norm / y_norm |
|
|
|
def _projection(self, p, grad, perturb, delta, wd_ratio, eps): |
|
wd = 1 |
|
expand_size = [-1] + [1] * (len(p.shape) - 1) |
|
for view_func in [self._channel_view, self._layer_view]: |
|
|
|
cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func) |
|
|
|
if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)): |
|
p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps) |
|
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size) |
|
wd = wd_ratio |
|
|
|
return perturb, wd |
|
|
|
return perturb, wd |
|
|
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
|
|
grad = p.grad.data |
|
beta1, beta2 = group['betas'] |
|
nesterov = group['nesterov'] |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
state['exp_avg'] = torch.zeros_like(p.data) |
|
state['exp_avg_sq'] = torch.zeros_like(p.data) |
|
|
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
|
state['step'] += 1 |
|
bias_correction1 = 1 - beta1 ** state['step'] |
|
bias_correction2 = 1 - beta2 ** state['step'] |
|
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
step_size = group['lr'] / bias_correction1 |
|
|
|
if nesterov: |
|
perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom |
|
else: |
|
perturb = exp_avg / denom |
|
|
|
|
|
wd_ratio = 1 |
|
if len(p.shape) > 1: |
|
perturb, wd_ratio = self._projection(p, grad, perturb, group['delta'], group['wd_ratio'], group['eps']) |
|
|
|
|
|
if group['weight_decay'] > 0: |
|
p.data.mul_(1 - group['lr'] * group['weight_decay'] * wd_ratio) |
|
|
|
|
|
p.data.add_(-step_size, perturb) |
|
|
|
return loss |
|
|