eP-ALM / dataset /gqa.py
mshukor
init
3eb682b
raw
history blame
17.1 kB
## from VL-Adapter
from torch.utils.data import DataLoader, Dataset
from pathlib import Path
import json
import random
import torch
import numpy as np
from torchvision import transforms
from torch.utils.data.distributed import DistributedSampler
from dataset.randaugment import RandomAugment
from PIL import Image
import re
project_dir = Path(__file__).resolve().parent.parent # VLT5
workspace_dir = project_dir.parent
class GQAFineTuneDataset(Dataset):
def __init__(self, split='train,valid', raw_dataset=None, rank=-1, topk=-1, verbose=True, args=None, mode='train', data_dir=None):
super().__init__()
self.raw_dataset = raw_dataset
self.topk = topk
self.verbose = verbose
self.args = args
self.mode = mode
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
self.train_transform = transforms.Compose([
transforms.RandomResizedCrop(args.image_size,scale=(0.5, 1.0), interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
RandomAugment(2,7,isPIL=True,augs=['Identity','AutoContrast','Equalize','Brightness','Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
transforms.ToTensor(),
normalize,
])
self.test_transform = transforms.Compose([
transforms.Resize((args.image_size,args.image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
### dataset paths
dataset_dir = Path(data_dir)
vg_dir = dataset_dir.joinpath('VG')
gqa_dir = dataset_dir.joinpath('GQA')
gqa_img_dir = gqa_dir.joinpath('images/')
vg_img_dir = vg_dir.joinpath('VG_100K/')
vizwiz_img_dir = dataset_dir.joinpath('vizwiz')
self.sources = split.split(',')
if self.verbose:
print('Data sources: ', self.sources)
self.img_ids_to_source = {}
data_info_dicts = []
for source in self.sources:
data_info_path = dataset_dir.joinpath(f'GQA/{source}.json')
with open(data_info_path) as f:
_data_info_dicts = json.load(f)
for _d in _data_info_dicts:
self.img_ids_to_source[_d['img_id']] = source
_d['source'] = source
data_info_dicts.extend(_data_info_dicts)
if self.verbose:
print(f"Loaded {len(_data_info_dicts)} data from", source)
data = data_info_dicts
if isinstance(self.topk, float) and (0 < self.topk <= 1):
used_samples = int(self.topk * len(data))
data = random.sample(data, used_samples)
if self.verbose:
print(f"Use only {len(data)} data")
elif self.topk > 0:
data = data[:int(self.topk)]
if self.verbose:
print(f"Use only {len(data)} data")
self.data = data
if self.verbose:
print("# all sentences:", len(self.data))
self.image_size = self.args.image_size
if mode == "train" and self.args.use_data_augmentation:
self.transform = self.train_transform
else:
self.transform = self.test_transform
self.source_to_featname = {
'train': 'others',
'valid': 'others',
'submit': 'testdev',
'testdev': 'testdev',
'val_vg': 'others',
'train_vg': 'others',
'train_vizwiz': 'train_vizwiz',
'val_vizwiz': 'val_vizwiz'
}
self.featname_to_h5 = {
'others': vg_img_dir,
'testdev': gqa_img_dir,
'train_vizwiz': vizwiz_img_dir.joinpath('train'),
'val_vizwiz': vizwiz_img_dir.joinpath('val'),
}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
out_dict = {}
out_dict['args'] = self.args
datum = self.data[idx]
img_id = datum['img_id']
out_dict['img_id'] = img_id
source = self.img_ids_to_source[img_id]
featname = self.source_to_featname[source]
path = self.featname_to_h5[featname].joinpath(f"{img_id}.jpg")
image = Image.open(path).convert("RGB")
out_dict["image"] = self.transform(image)
###### Text #####
if 'sent' in datum:
sent = datum['sent']
elif 'question' in datum:
sent = datum['question']
question_id = datum['question_id']
out_dict['question_id'] = question_id
out_dict['sent'] = sent
if 'label' in datum:
label = datum['label']
out_dict['label'] = label
# https://github.com/airsplay/lxmert/blob/master/src/pretrain/lxmert_pretrain.py#L191
answers = []
scores = []
for a, s in label.items():
answers.append(a)
scores.append(s)
score_sum = sum(scores)
if score_sum == 0:
answer = ''
score = 0.
else:
prob = [score / score_sum for score in scores]
choice = np.random.multinomial(1, prob).argmax()
answer = answers[choice]
score = scores[choice]
assert len(answer) > 0, (sent, label, choice, answer)
out_dict['answer'] = answer
out_dict['score'] = score
out_dict['all_answers'] = answers
return out_dict
def collate_fn(self, batch):
batch_entry = {}
B = len(batch)
sentences = []
question_ids = []
answers = []
all_answers = []
all_answers_tokenized = []
best_answers_tokenized = []
img_ids = []
img_paths = []
labels = []
scores = []
images = []
for i, entry in enumerate(batch):
images.append(entry["image"])
sentences.append(entry['sent'])
question_ids.append(entry['question_id'])
if 'answer' in entry:
answers.append(entry['answer'])
if 'all_answers' in entry:
all_answers.append(entry['all_answers'])
if 'score' in entry:
scores.append(entry['score'])
if 'label' in entry:
labels.append(entry['label'])
batch_entry['images'] = torch.stack(images)
batch_entry['sent'] = sentences
batch_entry['question_ids'] = question_ids
batch_entry['answers'] = answers
batch_entry['all_answers'] = all_answers
batch_entry['scores'] = torch.FloatTensor(scores)
batch_entry['labels'] = labels
batch_entry['task'] = 'gqa'
return batch_entry
def get_loader(args, split='train', mode='train',
batch_size=32, workers=4, distributed=False, gpu=0,
topk=-1, verbose=None, data_dir='/data/mshukor/data', local_rank=None, world_size=None):
_dset = GQADataset(split, verbose, data_dir=data_dir)
dataset = GQAFineTuneDataset(
split,
raw_dataset=_dset,
rank=gpu,
topk=topk,
verbose=verbose,
args=args,
mode=mode, data_dir=data_dir)
if distributed:
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=local_rank)
else:
sampler = None
if mode == 'train':
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=(sampler is None),
num_workers=workers, pin_memory=True, sampler=sampler,
collate_fn=dataset.collate_fn)
else:
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=workers, pin_memory=True,
sampler=sampler,
shuffle=None if (sampler is not None) else False,
collate_fn=dataset.collate_fn,
drop_last=False)
loader.evaluator = GQAEvaluator(_dset)
loader.task = 'gqa'
return loader
class GQADataset:
"""
A GQA data example in json file:
{
"img_id": "2375429",
"label": {
"pipe": 1.0
},
"question_id": "07333408",
"sent": "What is on the white wall?"
}
"""
def __init__(self, splits: str, verbose=True, data_dir='/data/mshukor/data'):
self.name = splits
self.splits = splits.split(',')
dataset_dir = Path(data_dir)
gqa_dir = dataset_dir.joinpath('GQA')
# Loading datasets to data
self.data = []
for split in self.splits:
self.data.extend(json.load(open(gqa_dir.joinpath("%s.json" % split))))
if verbose:
print("Load %d data from split(s) %s." %
(len(self.data), self.name))
# List to dict (for evaluation and others)
self.id2datum = {
int(datum['question_id']): datum
for datum in self.data
}
# Answers
self.ans2label = json.load(open(gqa_dir.joinpath("trainval_ans2label.json")))
self.label2ans = json.load(open(gqa_dir.joinpath("trainval_label2ans.json")))
assert len(self.ans2label) == len(self.label2ans)
for ans, label in self.ans2label.items():
assert self.label2ans[label] == ans
@property
def num_answers(self):
return len(self.ans2label)
def __len__(self):
return len(self.data)
class GQAEvaluator:
def __init__(self, dataset: GQADataset):
self.dataset = dataset
"""https://github.com/GT-Vision-Lab/VQA/blob/master/PythonEvaluationTools/vqaEvaluation/vqaEval.py"""
self.contractions = {"aint": "ain't", "arent": "aren't", "cant": "can't", "couldve": "could've", "couldnt": "couldn't", \
"couldn'tve": "couldn't've", "couldnt've": "couldn't've", "didnt": "didn't", "doesnt": "doesn't", "dont": "don't", "hadnt": "hadn't", \
"hadnt've": "hadn't've", "hadn'tve": "hadn't've", "hasnt": "hasn't", "havent": "haven't", "hed": "he'd", "hed've": "he'd've", \
"he'dve": "he'd've", "hes": "he's", "howd": "how'd", "howll": "how'll", "hows": "how's", "Id've": "I'd've", "I'dve": "I'd've", \
"Im": "I'm", "Ive": "I've", "isnt": "isn't", "itd": "it'd", "itd've": "it'd've", "it'dve": "it'd've", "itll": "it'll", "let's": "let's", \
"maam": "ma'am", "mightnt": "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", "mightve": "might've", \
"mustnt": "mustn't", "mustve": "must've", "neednt": "needn't", "notve": "not've", "oclock": "o'clock", "oughtnt": "oughtn't", \
"ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", "shant": "shan't", "shed've": "she'd've", "she'dve": "she'd've", \
"she's": "she's", "shouldve": "should've", "shouldnt": "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've", \
"somebody'd": "somebodyd", "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", "somebodyll": "somebody'll", \
"somebodys": "somebody's", "someoned": "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've", \
"someonell": "someone'll", "someones": "someone's", "somethingd": "something'd", "somethingd've": "something'd've", \
"something'dve": "something'd've", "somethingll": "something'll", "thats": "that's", "thered": "there'd", "thered've": "there'd've", \
"there'dve": "there'd've", "therere": "there're", "theres": "there's", "theyd": "they'd", "theyd've": "they'd've", \
"they'dve": "they'd've", "theyll": "they'll", "theyre": "they're", "theyve": "they've", "twas": "'twas", "wasnt": "wasn't", \
"wed've": "we'd've", "we'dve": "we'd've", "weve": "we've", "werent": "weren't", "whatll": "what'll", "whatre": "what're", \
"whats": "what's", "whatve": "what've", "whens": "when's", "whered": "where'd", "wheres": "where's", "whereve": "where've", \
"whod": "who'd", "whod've": "who'd've", "who'dve": "who'd've", "wholl": "who'll", "whos": "who's", "whove": "who've", "whyll": "why'll", \
"whyre": "why're", "whys": "why's", "wont": "won't", "wouldve": "would've", "wouldnt": "wouldn't", "wouldnt've": "wouldn't've", \
"wouldn'tve": "wouldn't've", "yall": "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've", \
"y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", "youd": "you'd", "youd've": "you'd've", "you'dve": "you'd've", \
"youll": "you'll", "youre": "you're", "youve": "you've"}
self.manualMap = { 'none': '0',
'zero': '0',
'one': '1',
'two': '2',
'three': '3',
'four': '4',
'five': '5',
'six': '6',
'seven': '7',
'eight': '8',
'nine': '9',
'ten': '10'
}
self.articles = ['a',
'an',
'the'
]
self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
self.commaStrip = re.compile("(\d)(\,)(\d)")
self.punct = [';', r"/", '[', ']', '"', '{', '}',
'(', ')', '=', '+', '\\', '_', '-',
'>', '<', '@', '`', ',', '?', '!']
def evaluate(self, quesid2ans: dict, normalize_answer=False):
score = 0.
for quesid, ans in quesid2ans.items():
datum = self.dataset.id2datum[quesid]
label = datum['label']
if normalize_answer:
ans = self.normalize_answer(ans)
new_label = {self.normalize_answer(l): label[l] for l in label}
else:
new_label = label
if ans in new_label:
# print(ans, new_label)
score += new_label[ans]
return score / len(quesid2ans)
def normalize_answer(self, resAns):
resAns = resAns.replace('\n', ' ')
resAns = resAns.replace('\t', ' ')
resAns = resAns.strip()
resAns = self.processPunctuation(resAns)
resAns = self.processDigitArticle(resAns)
resAns = resAns.replace(',', '')
return resAns
def processPunctuation(self, inText):
outText = inText
for p in self.punct:
if (p + ' ' in inText or ' ' + p in inText) or (re.search(self.commaStrip, inText) != None):
outText = outText.replace(p, '')
else:
outText = outText.replace(p, ' ')
outText = self.periodStrip.sub("",
outText,
re.UNICODE)
return outText
def processDigitArticle(self, inText):
outText = []
tempText = inText.lower().split()
for word in tempText:
word = self.manualMap.setdefault(word, word)
if word not in self.articles:
outText.append(word)
else:
pass
for wordId, word in enumerate(outText):
if word in self.contractions:
outText[wordId] = self.contractions[word]
outText = ' '.join(outText)
return outText
def dump_result(self, quesid2ans: dict, path):
"""
Dump the result to a GQA-challenge submittable json file.
GQA json file submission requirement:
results = [result]
result = {
"questionId": str, # Note: it's a actually an int number but the server requires an str.
"prediction": str
}
:param quesid2ans: A dict mapping question id to its predicted answer.
:param path: The file path to save the json file.
:return:
"""
with open(path, 'w') as f:
result = []
for ques_id, ans in quesid2ans.items():
result.append({
'questionId': ques_id,
'prediction': ans
})
json.dump(result, f, indent=4, sort_keys=True)