|
import argparse |
|
import os |
|
import ruamel_yaml as yaml |
|
import numpy as np |
|
import random |
|
import time |
|
import datetime |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
|
|
|
|
from models.epalm import ePALM |
|
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage |
|
|
|
|
|
|
|
from transformers import AutoTokenizer |
|
|
|
|
|
import utils |
|
|
|
|
|
from dataset.gqa import get_loader |
|
|
|
from scheduler import create_scheduler |
|
from optim import create_optimizer |
|
|
|
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
from models.utils import filter_state, filter_msg, exclude_list |
|
|
|
|
|
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config): |
|
model.train() |
|
|
|
|
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) |
|
|
|
config_optim = utils.AttrDict(config['optimizer']) |
|
prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None |
|
connector_lr = config_optim.connector_lr if hasattr(config_optim, 'connector_lr') else None |
|
vis_lr = config_optim.vis_lr if hasattr(config_optim, 'vis_lr') else None |
|
text_lr = config_optim.text_lr if hasattr(config_optim, 'text_lr') else None |
|
|
|
print(vis_lr, text_lr, connector_lr, len(optimizer.param_groups)) |
|
if prompt_lr is not None: |
|
metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
|
|
|
|
|
|
header = 'Train Epoch: [{}]'.format(epoch) |
|
print_freq = 50 |
|
step_size = 100 |
|
warmup_iterations = warmup_steps*step_size |
|
lm_loss_weight = config.get('lm_loss_weight', 1) |
|
special_answer_token = config.get('special_answer_token', None) |
|
|
|
special_eo_answer_token = config.get('special_eo_answer_token', None) |
|
|
|
|
|
shift_labels = config.get('shift_labels', False) |
|
|
|
loss_only_on_answers = config.get('loss_only_on_answers', False) |
|
|
|
eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token |
|
|
|
for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)): |
|
|
|
|
|
image = batch['images'].to(device,non_blocking=True) |
|
|
|
question = batch['sent'] |
|
|
|
answer = batch['answers'] |
|
|
|
|
|
questions_answers = [] |
|
|
|
if loss_only_on_answers: |
|
if special_answer_token is not None: |
|
questions_ = [question[i] + "?" for i in range(len(question))] |
|
answers_ = [special_answer_token + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))] |
|
questions_input = tokenizer(questions_, padding='longest', return_tensors="pt").to(device) |
|
answers_input = tokenizer(answers_, padding='longest', return_tensors="pt").to(device) |
|
|
|
questions_targets = torch.ones_like(questions_input.input_ids)*(-100) |
|
answer_targets_ = answers_input.input_ids.masked_fill(answers_input.input_ids == tokenizer.pad_token_id, -100) |
|
|
|
questions_answers_input = questions_input |
|
|
|
|
|
questions_answers_input.input_ids = torch.cat((questions_input.input_ids, answers_input.input_ids[:, 1:]), dim=-1) |
|
questions_answers_input.attention_mask = torch.cat((questions_input.attention_mask, answers_input.attention_mask[:, 1:]), dim=-1) |
|
|
|
answer_targets = torch.cat((questions_targets, answer_targets_[:, 1:]), dim=-1) |
|
else: |
|
raise NotImplementedError |
|
else: |
|
if special_answer_token is not None: |
|
questions_answers += [question[i] + "?" + special_answer_token + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))] |
|
else: |
|
questions_answers += [question[i] + "</s>" + answer[i].replace('[SEP]','') + eos_token for i in range(len(question))] |
|
|
|
questions_answers_input = tokenizer(questions_answers, padding='longest', return_tensors="pt").to(device) |
|
answer_targets = questions_answers_input.input_ids.masked_fill(questions_answers_input.input_ids == tokenizer.pad_token_id, -100) |
|
|
|
images = image |
|
|
|
|
|
|
|
|
|
if shift_labels: |
|
new_target = torch.ones_like(answer_targets)*(-100) |
|
new_target[:, :-1] = answer_targets[:, 1:] |
|
answer_targets = new_target |
|
|
|
answer_output = model(image=images, |
|
text=questions_answers_input, |
|
labels = answer_targets, |
|
return_dict = True, |
|
mode='train', |
|
reduction='none', |
|
) |
|
|
|
loss = answer_output.loss |
|
loss = loss.sum()/image.size(0) |
|
loss = loss*lm_loss_weight |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
metric_logger.update(loss=loss.item()) |
|
metric_logger.update(lr=optimizer.param_groups[0]["lr"]) |
|
if prompt_lr is not None: |
|
metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"]) |
|
|
|
if i % print_freq == 0: |
|
lrs = [g["lr"] for g in optimizer.param_groups] |
|
print(lrs) |
|
|
|
if epoch==0 and i%step_size==0 and i<=warmup_iterations: |
|
if scheduler is not None: |
|
scheduler.step(i//step_size) |
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger.global_avg()) |
|
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def predict(model, loader, tokenizer, device, dump_path=None, verbose=False, distributed=False, special_answer_token=None, special_eo_answer_token=None): |
|
model.eval() |
|
eos_token = tokenizer.eos_token if special_eo_answer_token is None else special_eo_answer_token |
|
pad_token = tokenizer.pad_token |
|
|
|
with torch.no_grad(): |
|
quesid2ans = {} |
|
if verbose: |
|
pbar = tqdm(total=len(loader), ncols=120, desc="Prediction") |
|
for i, batch in enumerate(loader): |
|
|
|
|
|
image = batch['images'].to(device,non_blocking=True) |
|
|
|
question = batch['sent'] |
|
|
|
question_id = batch['question_ids'] |
|
|
|
if special_answer_token is not None: |
|
question = [q+'?'+special_answer_token for q in question] |
|
else: |
|
question = [q+eos_token for q in question] |
|
|
|
question_input = tokenizer(question, padding='longest', return_tensors="pt").to(device) |
|
|
|
out = model(image=image, text=question_input, mode='generate', return_dict=True, max_length=30, do_sample=True) |
|
|
|
|
|
|
|
|
|
for ques_id, o in zip(question_id, out): |
|
o_list = o.tolist() |
|
try: |
|
if special_answer_token is not None: |
|
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') |
|
else: |
|
response = tokenizer.decode(o_list).split('</s>')[2].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') |
|
except TypeError: |
|
print(o_list) |
|
response = ' ' |
|
|
|
ques_id = int(ques_id) |
|
quesid2ans[ques_id] = response |
|
|
|
|
|
if verbose: |
|
pbar.update(1) |
|
if verbose: |
|
pbar.close() |
|
|
|
if distributed: |
|
dist.barrier() |
|
|
|
qid2ans_list = utils.all_gather(quesid2ans) |
|
if verbose: |
|
quesid2ans = {} |
|
for qid2ans in qid2ans_list: |
|
for k, v in qid2ans.items(): |
|
quesid2ans[k] = v |
|
|
|
if dump_path is not None: |
|
evaluator = loader.evaluator |
|
evaluator.dump_result(quesid2ans, dump_path) |
|
|
|
return quesid2ans |
|
|
|
|
|
|
|
|
|
def evaluate(model, data_loader, tokenizer, device, |
|
distributed=False, special_answer_token=None, special_eo_answer_token=None): |
|
verbose = utils.is_main_process() |
|
|
|
quesid2ans = predict(model, data_loader, tokenizer, device, verbose=verbose, |
|
distributed=distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token) |
|
|
|
evaluator = data_loader.evaluator |
|
|
|
acc_dict = {} |
|
topk_score = evaluator.evaluate(quesid2ans, normalize_answer=True) |
|
acc_dict['topk_score'] = topk_score |
|
return acc_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(args, config): |
|
os.environ['TORCH_HOME'] = os.environ['XDG_CACHE_HOME']+'/torch' |
|
utils.init_distributed_mode(args) |
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
seed = args.seed + utils.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
cudnn.benchmark = True |
|
|
|
start_epoch = 0 |
|
max_epoch = config['schedular']['epochs'] |
|
warmup_steps = config['schedular']['warmup_epochs'] |
|
|
|
|
|
|
|
|
|
print("Creating dataset") |
|
|
|
|
|
if args.distributed: |
|
num_tasks = utils.get_world_size() |
|
global_rank = utils.get_rank() |
|
else: |
|
num_tasks = None |
|
global_rank = None |
|
|
|
num_workers = config.get('num_workers', 4) |
|
train_topk = config.get('train_topk', -1) |
|
valid_topk = config.get('valid_topk', -1) |
|
data_dir = args.data_dir |
|
|
|
args.image_size = config.get('image_res', 224) |
|
args.use_data_augmentation = True |
|
|
|
train_split = config.get('train_split', 'train') |
|
val_split = config.get('val_split', 'valid') |
|
test_split = config.get('test_split', 'testdev') |
|
|
|
train_loader = get_loader( |
|
args, |
|
split=train_split, mode='train', batch_size=config['batch_size_train'], |
|
distributed=args.distributed, |
|
workers=num_workers, |
|
topk=train_topk, |
|
data_dir=data_dir, |
|
local_rank=global_rank, world_size=num_tasks, verbose=True |
|
) |
|
|
|
args.raw_label = False |
|
print('# len train loader:', len(train_loader)) |
|
print(f'Building val loader') |
|
val_loader = get_loader( |
|
args, |
|
split=val_split, mode='val', batch_size=config['batch_size_test'], |
|
distributed=args.distributed, |
|
workers=4, |
|
topk=valid_topk,data_dir=data_dir, |
|
local_rank=global_rank, world_size=num_tasks, verbose=True |
|
) |
|
print('# len val loader:', len(val_loader)) |
|
|
|
print(f'Building test loader') |
|
test_loader = get_loader( |
|
args, |
|
split=test_split, mode='val', batch_size=config['batch_size_test'], |
|
distributed=args.distributed, |
|
workers=4, |
|
topk=valid_topk,data_dir=data_dir, |
|
local_rank=global_rank, world_size=num_tasks, verbose=True |
|
) |
|
|
|
|
|
print('# len test loader:', len(test_loader)) |
|
|
|
|
|
if args.submit: |
|
print(f'Building test submit loader ...') |
|
submit_test_loader = get_loader( |
|
args, |
|
split='test', mode='val', batch_size=config['batch_size_test'], |
|
distributed=args.distributed, gpu=args.gpu, |
|
workers=4, |
|
topk=valid_topk, data_dir=data_dir, |
|
local_rank=global_rank, world_size=num_tasks, verbose=True |
|
) |
|
|
|
|
|
print("Creating model") |
|
|
|
start_layer_idx = config.get('start_layer_idx', 0) |
|
end_layer_idx = config.get('end_layer_idx', 0) |
|
|
|
|
|
model = ePALM(opt_model_name = args.text_model, |
|
vision_model_name = args.vision_model, |
|
use_vis_prefix = True, |
|
start_layer_idx = start_layer_idx, |
|
end_layer_idx = end_layer_idx, |
|
return_hidden_state_vision = True, |
|
config=config, |
|
) |
|
|
|
|
|
model = model.to(device) |
|
|
|
|
|
tokenizer_name = config.get('tokenizer_name', args.text_model) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False, local_files_only=True) |
|
|
|
|
|
|
|
special_answer_token = config.get('special_answer_token', None) |
|
special_eo_answer_token = config.get('special_eo_answer_token', None) |
|
|
|
|
|
if special_answer_token is not None: |
|
special_tokens_dict = {'additional_special_tokens': [special_answer_token]} |
|
if special_eo_answer_token is not None: |
|
special_tokens_dict['additional_special_tokens'] += [special_eo_answer_token] |
|
|
|
tokenizer.add_special_tokens(special_tokens_dict) |
|
print("Adding special token:", special_tokens_dict) |
|
print(tokenizer) |
|
|
|
arg_opt = utils.AttrDict(config['optimizer']) |
|
optimizer = create_optimizer(arg_opt, model, config=config['optimizer']) |
|
|
|
if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None: |
|
print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr']) |
|
print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr']) |
|
|
|
arg_sche = utils.AttrDict(config['schedular']) |
|
lr_scheduler, _ = create_scheduler(arg_sche, optimizer) |
|
|
|
|
|
if args.checkpoint: |
|
|
|
checkpoint = torch.load(args.checkpoint, map_location='cpu') |
|
state_dict = checkpoint['model'] |
|
msg = model.load_state_dict(state_dict,strict=False) |
|
msg = filter_msg(msg, exclude_list) |
|
print('load checkpoint from %s'%args.checkpoint) |
|
print(msg) |
|
|
|
if args.resume: |
|
model = model.to(device) |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) |
|
start_epoch = checkpoint['epoch']+1 |
|
print(checkpoint.keys()) |
|
if 'best_valid' in checkpoint: |
|
best_valid = checkpoint['best_valid'] |
|
best_epoch = checkpoint['best_epoch'] |
|
print("load best valid {} at epoch {}".format(best_valid, best_epoch)) |
|
|
|
freeze_whole_model(model) |
|
unfreeze_parameters(model, config) |
|
print_trainable_params_percentage(model) |
|
|
|
model_without_ddp = model |
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) |
|
model_without_ddp = model.module |
|
|
|
|
|
print("Start training") |
|
start_time = time.time() |
|
|
|
best_valid = 0. |
|
best_epoch = 0 |
|
|
|
for epoch in range(start_epoch, max_epoch): |
|
if epoch>0: |
|
if lr_scheduler is not None: |
|
lr_scheduler.step(epoch+warmup_steps) |
|
|
|
if not args.evaluate: |
|
if args.distributed: |
|
train_loader.sampler.set_epoch(epoch) |
|
|
|
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config) |
|
|
|
if args.evaluate: |
|
break |
|
|
|
score_dict = evaluate(model, val_loader, tokenizer, device, distributed=args.distributed, |
|
special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token) |
|
print(score_dict) |
|
if utils.is_main_process(): |
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
'epoch': epoch, |
|
} |
|
with open(os.path.join(args.output_dir, "log.txt"),"a") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
if lr_scheduler is None: |
|
lr_scheduler_state_dict = {} |
|
else: |
|
lr_scheduler_state_dict = lr_scheduler.state_dict() |
|
save_obj = { |
|
'model': filter_state(model_without_ddp.state_dict(), exclude_list), |
|
'optimizer': optimizer.state_dict(), |
|
'lr_scheduler': lr_scheduler_state_dict, |
|
'config': config, |
|
'epoch': epoch, |
|
'best_valid': best_valid, |
|
'best_epoch': best_epoch, |
|
} |
|
|
|
if args.save_best: |
|
valid_score = score_dict['topk_score'] * 100. |
|
if valid_score > best_valid or epoch == 0: |
|
best_valid = valid_score |
|
best_epoch = epoch |
|
|
|
save_obj['best_valid'] = best_valid |
|
save_obj['best_epoch'] = best_epoch |
|
|
|
print("save best epoch:", best_epoch) |
|
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth')) |
|
|
|
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth')) |
|
|
|
dist.barrier() |
|
|
|
if lr_scheduler is None: |
|
lr_scheduler_state_dict = {} |
|
else: |
|
lr_scheduler_state_dict = lr_scheduler.state_dict() |
|
save_obj = { |
|
'model': filter_state(model_without_ddp.state_dict(), exclude_list), |
|
'optimizer': optimizer.state_dict(), |
|
'lr_scheduler': lr_scheduler_state_dict, |
|
'config': config, |
|
'epoch': epoch, |
|
'best_valid': best_valid, |
|
'best_epoch': best_epoch, |
|
} |
|
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth')) |
|
|
|
verbose = utils.is_main_process() |
|
|
|
|
|
if not args.evaluate: |
|
checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu') |
|
state_dict = checkpoint['model'] |
|
msg = model.module.load_state_dict(state_dict,strict=False) |
|
msg = filter_msg(msg, exclude_list) |
|
print('load checkpoint for test from %s'%os.path.join(args.output_dir, 'checkpoint_best.pth')) |
|
print(msg) |
|
|
|
quesid2ans = predict(model, test_loader, tokenizer, device, verbose=verbose, |
|
distributed=args.distributed, special_answer_token=special_answer_token, special_eo_answer_token=special_eo_answer_token) |
|
|
|
evaluator = test_loader.evaluator |
|
score_dict = evaluator.evaluate(quesid2ans, normalize_answer=True) |
|
|
|
print("Test accuracy:", score_dict) |
|
|
|
if args.submit: |
|
dump_path = os.path.join(args.output_dir, 'submit.json') |
|
predict(submit_test_loader, dump_path) |
|
|
|
if args.distributed: |
|
dist.barrier() |
|
exit() |
|
|
|
|
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', default='./configs/VQA.yaml') |
|
parser.add_argument('--checkpoint', default='') |
|
parser.add_argument('--output_dir', default='output/vqa') |
|
parser.add_argument('--evaluate', action='store_true') |
|
parser.add_argument('--text_model', default='facebook/opt-350m') |
|
parser.add_argument('--vision_model', default='vit_base_patch16_224') |
|
parser.add_argument('--device', default='cuda') |
|
parser.add_argument('--seed', default=42, type=int) |
|
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') |
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') |
|
parser.add_argument('--distributed', default=True, type=bool) |
|
|
|
parser.add_argument('--data_dir', default='/data/mshukor/data') |
|
parser.add_argument('--resume', action='store_true') |
|
|
|
parser.add_argument('--submit', action='store_true') |
|
parser.add_argument('--save_best', action='store_true') |
|
|
|
|
|
|
|
args = parser.parse_args() |
|
|
|
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) |
|
|
|
args.result_dir = os.path.join(args.output_dir, 'result') |
|
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
Path(args.result_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w')) |
|
|
|
main(args, config) |