eP-ALM / dataset /.ipynb_checkpoints /utils-checkpoint.py
mshukor
init
3eb682b
raw
history blame
6.91 kB
# https://github.com/salesforce/ALBEF
import re
def pre_question(question,max_ques_words):
question = re.sub(
r"([,.'!?\"()*#:;~])",
'',
question.lower(),
).replace('-', ' ').replace('/', ' ')
question = question.rstrip(' ')
#truncate question
question_words = question.split(' ')
if len(question_words)>max_ques_words:
question = ' '.join(question_words[:max_ques_words])
return question
def pre_caption(caption,max_words):
caption = re.sub(
r"([,.'!?\"()*#:;~])",
'',
caption.lower(),
).replace('-', ' ').replace('/', ' ').replace('<person>', 'person')
caption = re.sub(
r"\s{2,}",
' ',
caption,
)
caption = caption.rstrip('\n')
caption = caption.strip(' ')
#truncate caption
caption_words = caption.split(' ')
if len(caption_words)>max_words:
caption = ' '.join(caption_words[:max_words])
return caption
from vqaTools.vqaEval import VQAEval
from refTools.evaluation.refEvaluation import RefEvaluation
import json
import os
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import utils
from tqdm import tqdm
def vqa_eval(vqa, result_file, test_ques_path):
vqaRes = vqa.loadRes(result_file, test_ques_path)
# create vqaEval object by taking vqa and vqaRes
vqaEval = VQAEval(vqa, vqaRes, n=2) # n is precision of accuracy (number of places after decimal), default is 2
# evaluate results
vqaEval.evaluate()
# print accuracies
print("\n")
print("Overall Accuracy is: %.02f\n" % (vqaEval.accuracy['overall']))
print("Per Answer Type Accuracy is the following:")
for ansType in vqaEval.accuracy['perAnswerType']:
print("%s : %.02f" % (ansType, vqaEval.accuracy['perAnswerType'][ansType]))
print("\n")
return vqaEval
def collect_result(result, result_dir, filename, is_json=True, is_list=True):
if is_json:
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
final_result_file = os.path.join(result_dir, '%s.json'%filename)
json.dump(result,open(result_file,'w'))
else:
result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,utils.get_rank()))
final_result_file = os.path.join(result_dir, '%s.pth'%filename)
torch.save(result,result_file)
dist.barrier()
result = None
if utils.is_main_process():
# combine results from all processes
if is_list:
result = []
else:
result = {}
for rank in range(utils.get_world_size()):
if is_json:
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
res = json.load(open(result_file,'r'))
else:
result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,rank))
res = torch.load(result_file)
if is_list:
result += res
else:
result.update(res)
return result
def save_result(result, result_dir, filename, is_json=True, is_list=True):
if is_json:
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
final_result_file = os.path.join(result_dir, '%s.json'%filename)
json.dump(result,open(result_file,'w'))
else:
result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,utils.get_rank()))
final_result_file = os.path.join(result_dir, '%s.pth'%filename)
torch.save(result,result_file)
dist.barrier()
if utils.is_main_process():
# combine results from all processes
if is_list:
result = []
else:
result = {}
for rank in range(utils.get_world_size()):
if is_json:
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
res = json.load(open(result_file,'r'))
else:
result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,rank))
res = torch.load(result_file)
if is_list:
result += res
else:
result.update(res)
if is_json:
json.dump(result,open(final_result_file,'w'))
else:
torch.save(result,final_result_file)
print('result file saved to %s'%final_result_file)
dist.barrier()
return final_result_file
def grounding_eval(results,dets,cocos,refer,alpha,mask_size=24):
correct_A_d, correct_B_d, correct_val_d = 0, 0, 0
correct_A, correct_B, correct_val = 0, 0, 0
num_A,num_B,num_val = 0,0,0
for res in tqdm(results):
ref_id = res['ref_id']
ref = refer.Refs[ref_id]
ref_box = refer.refToAnn[ref_id]['bbox']
image = refer.Imgs[ref['image_id']]
mask = res['pred'].cuda().view(1,1,mask_size,mask_size)
mask = F.interpolate(mask,size = (image['height'],image['width']), mode='bicubic').squeeze()
# rank detection boxes
max_score = 0
for det in dets[str(ref['image_id'])]:
score = mask[int(det[1]):int(det[1]+det[3]),int(det[0]):int(det[0]+det[2])]
area = det[2]*det[3]
score = score.sum() / area**alpha
if score>max_score:
pred_box = det[:4]
max_score = score
IoU_det = computeIoU(ref_box, pred_box)
if ref['split']=='testA':
num_A += 1
if IoU_det >= 0.5:
correct_A_d += 1
elif ref['split']=='testB':
num_B += 1
if IoU_det >= 0.5:
correct_B_d += 1
elif ref['split']=='val':
num_val += 1
if IoU_det >= 0.5:
correct_val_d += 1
eval_result = {'val_d':correct_val_d/num_val,'testA_d':correct_A_d/num_A,'testB_d':correct_B_d/num_B}
for metric, acc in eval_result.items():
print(f'{metric}: {acc:.3f}')
return eval_result
# IoU function
def computeIoU(box1, box2):
# each box is of [x1, y1, w, h]
inter_x1 = max(box1[0], box2[0])
inter_y1 = max(box1[1], box2[1])
inter_x2 = min(box1[0]+box1[2]-1, box2[0]+box2[2]-1)
inter_y2 = min(box1[1]+box1[3]-1, box2[1]+box2[3]-1)
if inter_x1 < inter_x2 and inter_y1 < inter_y2:
inter = (inter_x2-inter_x1+1)*(inter_y2-inter_y1+1)
else:
inter = 0
union = box1[2]*box1[3] + box2[2]*box2[3] - inter
return float(inter)/union