|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import math |
|
from collections import OrderedDict |
|
from copy import deepcopy |
|
from typing import Callable |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.model_zoo as model_zoo |
|
import torch.nn.functional as F |
|
|
|
from timesformer.models.features import FeatureListNet, FeatureDictNet, FeatureHookNet |
|
from timesformer.models.conv2d_same import Conv2dSame |
|
from timesformer.models.linear import Linear |
|
|
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
def load_state_dict(checkpoint_path, use_ema=False): |
|
if checkpoint_path and os.path.isfile(checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location='cpu') |
|
state_dict_key = 'state_dict' |
|
if isinstance(checkpoint, dict): |
|
if use_ema and 'state_dict_ema' in checkpoint: |
|
state_dict_key = 'state_dict_ema' |
|
if state_dict_key and state_dict_key in checkpoint: |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint[state_dict_key].items(): |
|
|
|
name = k[7:] if k.startswith('module') else k |
|
new_state_dict[name] = v |
|
state_dict = new_state_dict |
|
elif 'model_state' in checkpoint: |
|
state_dict_key = 'model_state' |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint[state_dict_key].items(): |
|
|
|
name = k[6:] if k.startswith('model') else k |
|
new_state_dict[name] = v |
|
state_dict = new_state_dict |
|
else: |
|
state_dict = checkpoint |
|
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) |
|
return state_dict |
|
else: |
|
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) |
|
raise FileNotFoundError() |
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True): |
|
state_dict = load_state_dict(checkpoint_path, use_ema) |
|
model.load_state_dict(state_dict, strict=strict) |
|
|
|
|
|
def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True): |
|
resume_epoch = None |
|
if os.path.isfile(checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location='cpu') |
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: |
|
if log_info: |
|
_logger.info('Restoring model state from checkpoint...') |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint['state_dict'].items(): |
|
name = k[7:] if k.startswith('module') else k |
|
new_state_dict[name] = v |
|
model.load_state_dict(new_state_dict) |
|
|
|
if optimizer is not None and 'optimizer' in checkpoint: |
|
if log_info: |
|
_logger.info('Restoring optimizer state from checkpoint...') |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
|
|
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: |
|
if log_info: |
|
_logger.info('Restoring AMP loss scaler state from checkpoint...') |
|
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) |
|
|
|
if 'epoch' in checkpoint: |
|
resume_epoch = checkpoint['epoch'] |
|
if 'version' in checkpoint and checkpoint['version'] > 1: |
|
resume_epoch += 1 |
|
|
|
if log_info: |
|
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) |
|
else: |
|
model.load_state_dict(checkpoint) |
|
if log_info: |
|
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) |
|
return resume_epoch |
|
else: |
|
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) |
|
raise FileNotFoundError() |
|
|
|
|
|
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, img_size=224, num_frames=8, num_patches=196, attention_type='divided_space_time', pretrained_model="", strict=True): |
|
if cfg is None: |
|
cfg = getattr(model, 'default_cfg') |
|
if cfg is None or 'url' not in cfg or not cfg['url']: |
|
_logger.warning("Pretrained model URL is invalid, using random initialization.") |
|
return |
|
|
|
if len(pretrained_model) == 0: |
|
state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu') |
|
else: |
|
try: |
|
state_dict = load_state_dict(pretrained_model)['model'] |
|
except: |
|
state_dict = load_state_dict(pretrained_model) |
|
|
|
|
|
if filter_fn is not None: |
|
state_dict = filter_fn(state_dict) |
|
|
|
if in_chans == 1: |
|
conv1_name = cfg['first_conv'] |
|
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name) |
|
conv1_weight = state_dict[conv1_name + '.weight'] |
|
conv1_type = conv1_weight.dtype |
|
conv1_weight = conv1_weight.float() |
|
O, I, J, K = conv1_weight.shape |
|
if I > 3: |
|
assert conv1_weight.shape[1] % 3 == 0 |
|
|
|
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K) |
|
conv1_weight = conv1_weight.sum(dim=2, keepdim=False) |
|
else: |
|
conv1_weight = conv1_weight.sum(dim=1, keepdim=True) |
|
conv1_weight = conv1_weight.to(conv1_type) |
|
state_dict[conv1_name + '.weight'] = conv1_weight |
|
elif in_chans != 3: |
|
conv1_name = cfg['first_conv'] |
|
conv1_weight = state_dict[conv1_name + '.weight'] |
|
conv1_type = conv1_weight.dtype |
|
conv1_weight = conv1_weight.float() |
|
O, I, J, K = conv1_weight.shape |
|
if I != 3: |
|
_logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name) |
|
del state_dict[conv1_name + '.weight'] |
|
strict = False |
|
else: |
|
_logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name) |
|
repeat = int(math.ceil(in_chans / 3)) |
|
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] |
|
conv1_weight *= (3 / float(in_chans)) |
|
conv1_weight = conv1_weight.to(conv1_type) |
|
state_dict[conv1_name + '.weight'] = conv1_weight |
|
|
|
|
|
classifier_name = cfg['classifier'] |
|
if num_classes == 1000 and cfg['num_classes'] == 1001: |
|
|
|
classifier_weight = state_dict[classifier_name + '.weight'] |
|
state_dict[classifier_name + '.weight'] = classifier_weight[1:] |
|
classifier_bias = state_dict[classifier_name + '.bias'] |
|
state_dict[classifier_name + '.bias'] = classifier_bias[1:] |
|
elif num_classes != state_dict[classifier_name + '.weight'].size(0): |
|
|
|
|
|
del state_dict[classifier_name + '.weight'] |
|
del state_dict[classifier_name + '.bias'] |
|
strict = False |
|
|
|
|
|
|
|
if num_patches + 1 != state_dict['pos_embed'].size(1): |
|
pos_embed = state_dict['pos_embed'] |
|
cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1) |
|
other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2) |
|
new_pos_embed = F.interpolate(other_pos_embed, size=(num_patches), mode='nearest') |
|
new_pos_embed = new_pos_embed.transpose(1, 2) |
|
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) |
|
state_dict['pos_embed'] = new_pos_embed |
|
|
|
|
|
if 'time_embed' in state_dict and num_frames != state_dict['time_embed'].size(1): |
|
time_embed = state_dict['time_embed'].transpose(1, 2) |
|
new_time_embed = F.interpolate(time_embed, size=(num_frames), mode='nearest') |
|
state_dict['time_embed'] = new_time_embed.transpose(1, 2) |
|
|
|
|
|
if attention_type == 'divided_space_time': |
|
new_state_dict = state_dict.copy() |
|
for key in state_dict: |
|
if 'blocks' in key and 'attn' in key: |
|
new_key = key.replace('attn','temporal_attn') |
|
if not new_key in state_dict: |
|
new_state_dict[new_key] = state_dict[key] |
|
else: |
|
new_state_dict[new_key] = state_dict[new_key] |
|
if 'blocks' in key and 'norm1' in key: |
|
new_key = key.replace('norm1','temporal_norm1') |
|
if not new_key in state_dict: |
|
new_state_dict[new_key] = state_dict[key] |
|
else: |
|
new_state_dict[new_key] = state_dict[new_key] |
|
state_dict = new_state_dict |
|
|
|
|
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
def extract_layer(model, layer): |
|
layer = layer.split('.') |
|
module = model |
|
if hasattr(model, 'module') and layer[0] != 'module': |
|
module = model.module |
|
if not hasattr(model, 'module') and layer[0] == 'module': |
|
layer = layer[1:] |
|
for l in layer: |
|
if hasattr(module, l): |
|
if not l.isdigit(): |
|
module = getattr(module, l) |
|
else: |
|
module = module[int(l)] |
|
else: |
|
return module |
|
return module |
|
|
|
|
|
def set_layer(model, layer, val): |
|
layer = layer.split('.') |
|
module = model |
|
if hasattr(model, 'module') and layer[0] != 'module': |
|
module = model.module |
|
lst_index = 0 |
|
module2 = module |
|
for l in layer: |
|
if hasattr(module2, l): |
|
if not l.isdigit(): |
|
module2 = getattr(module2, l) |
|
else: |
|
module2 = module2[int(l)] |
|
lst_index += 1 |
|
lst_index -= 1 |
|
for l in layer[:lst_index]: |
|
if not l.isdigit(): |
|
module = getattr(module, l) |
|
else: |
|
module = module[int(l)] |
|
l = layer[lst_index] |
|
setattr(module, l, val) |
|
|
|
|
|
def adapt_model_from_string(parent_module, model_string): |
|
separator = '***' |
|
state_dict = {} |
|
lst_shape = model_string.split(separator) |
|
for k in lst_shape: |
|
k = k.split(':') |
|
key = k[0] |
|
shape = k[1][1:-1].split(',') |
|
if shape[0] != '': |
|
state_dict[key] = [int(i) for i in shape] |
|
|
|
new_module = deepcopy(parent_module) |
|
for n, m in parent_module.named_modules(): |
|
old_module = extract_layer(parent_module, n) |
|
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): |
|
if isinstance(old_module, Conv2dSame): |
|
conv = Conv2dSame |
|
else: |
|
conv = nn.Conv2d |
|
s = state_dict[n + '.weight'] |
|
in_channels = s[1] |
|
out_channels = s[0] |
|
g = 1 |
|
if old_module.groups > 1: |
|
in_channels = out_channels |
|
g = in_channels |
|
new_conv = conv( |
|
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, |
|
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, |
|
groups=g, stride=old_module.stride) |
|
set_layer(new_module, n, new_conv) |
|
if isinstance(old_module, nn.BatchNorm2d): |
|
new_bn = nn.BatchNorm2d( |
|
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, |
|
affine=old_module.affine, track_running_stats=True) |
|
set_layer(new_module, n, new_bn) |
|
if isinstance(old_module, nn.Linear): |
|
num_features = state_dict[n + '.weight'][1] |
|
new_fc = Linear( |
|
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) |
|
set_layer(new_module, n, new_fc) |
|
if hasattr(new_module, 'num_features'): |
|
new_module.num_features = num_features |
|
new_module.eval() |
|
parent_module.eval() |
|
|
|
return new_module |
|
|
|
|
|
def adapt_model_from_file(parent_module, model_variant): |
|
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt') |
|
with open(adapt_file, 'r') as f: |
|
return adapt_model_from_string(parent_module, f.read().strip()) |
|
|
|
|
|
def default_cfg_for_features(default_cfg): |
|
default_cfg = deepcopy(default_cfg) |
|
|
|
to_remove = ('num_classes', 'crop_pct', 'classifier') |
|
for tr in to_remove: |
|
default_cfg.pop(tr, None) |
|
return default_cfg |
|
|
|
|
|
def build_model_with_cfg( |
|
model_cls: Callable, |
|
variant: str, |
|
pretrained: bool, |
|
default_cfg: dict, |
|
model_cfg: dict = None, |
|
feature_cfg: dict = None, |
|
pretrained_strict: bool = True, |
|
pretrained_filter_fn: Callable = None, |
|
**kwargs): |
|
pruned = kwargs.pop('pruned', False) |
|
features = False |
|
feature_cfg = feature_cfg or {} |
|
|
|
if kwargs.pop('features_only', False): |
|
features = True |
|
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) |
|
if 'out_indices' in kwargs: |
|
feature_cfg['out_indices'] = kwargs.pop('out_indices') |
|
|
|
model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs) |
|
model.default_cfg = deepcopy(default_cfg) |
|
|
|
if pruned: |
|
model = adapt_model_from_file(model, variant) |
|
|
|
|
|
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) |
|
if pretrained: |
|
load_pretrained( |
|
model, |
|
num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3), |
|
filter_fn=pretrained_filter_fn, strict=pretrained_strict) |
|
|
|
if features: |
|
feature_cls = FeatureListNet |
|
if 'feature_cls' in feature_cfg: |
|
feature_cls = feature_cfg.pop('feature_cls') |
|
if isinstance(feature_cls, str): |
|
feature_cls = feature_cls.lower() |
|
if 'hook' in feature_cls: |
|
feature_cls = FeatureHookNet |
|
else: |
|
assert False, f'Unknown feature class {feature_cls}' |
|
model = feature_cls(model, **feature_cfg) |
|
model.default_cfg = default_cfg_for_features(default_cfg) |
|
|
|
return model |
|
|