|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Tuple, Optional |
|
|
|
import math |
|
from typing import List, Tuple |
|
|
|
|
|
|
|
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0): |
|
ih, iw = x.size()[-2:] |
|
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1]) |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], value=value) |
|
return x |
|
|
|
|
|
def get_same_padding(x: int, k: int, s: int, d: int): |
|
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0) |
|
|
|
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: |
|
dynamic = False |
|
if isinstance(padding, str): |
|
|
|
padding = padding.lower() |
|
if padding == 'same': |
|
|
|
if is_static_pad(kernel_size, **kwargs): |
|
|
|
padding = get_padding(kernel_size, **kwargs) |
|
else: |
|
|
|
padding = 0 |
|
dynamic = True |
|
elif padding == 'valid': |
|
|
|
padding = 0 |
|
else: |
|
|
|
padding = get_padding(kernel_size, **kwargs) |
|
return padding, dynamic |
|
|
|
def conv2d_same( |
|
x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1), |
|
padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1): |
|
x = pad_same(x, weight.shape[-2:], stride, dilation) |
|
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) |
|
|
|
|
|
class Conv2dSame(nn.Conv2d): |
|
""" Tensorflow like 'SAME' convolution wrapper for 2D convolutions |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
|
padding=0, dilation=1, groups=1, bias=True): |
|
super(Conv2dSame, self).__init__( |
|
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) |
|
|
|
def forward(self, x): |
|
return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
|
|
|
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs): |
|
padding = kwargs.pop('padding', '') |
|
kwargs.setdefault('bias', False) |
|
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs) |
|
if is_dynamic: |
|
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs) |
|
else: |
|
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs) |
|
|