Spaces:
Build error
Build error
# from openai clip | |
from collections import OrderedDict | |
from typing import Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
####### | |
import hashlib | |
import os | |
import urllib | |
import warnings | |
from typing import Any, Union, List | |
from pkg_resources import packaging | |
import torch | |
from PIL import Image | |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize | |
from tqdm import tqdm | |
# from .simple_tokenizer import SimpleTokenizer as _Tokenizer | |
try: | |
from torchvision.transforms import InterpolationMode | |
BICUBIC = InterpolationMode.BICUBIC | |
except ImportError: | |
BICUBIC = Image.BICUBIC | |
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): | |
warnings.warn("PyTorch version 1.7.1 or higher is recommended") | |
__all__ = ["available_models", "load", "tokenize"] | |
_MODELS = { | |
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", | |
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", | |
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", | |
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", | |
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", | |
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", | |
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", | |
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", | |
} | |
############# | |
import gzip | |
import html | |
import os | |
from functools import lru_cache | |
import ftfy | |
import regex as re | |
def default_bpe(): | |
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
def get_pairs(word): | |
"""Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
def basic_clean(text): | |
text = ftfy.fix_text(text) | |
text = html.unescape(html.unescape(text)) | |
return text.strip() | |
def whitespace_clean(text): | |
text = re.sub(r'\s+', ' ', text) | |
text = text.strip() | |
return text | |
class _Tokenizer(object): | |
def __init__(self, bpe_path: str = default_bpe()): | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') | |
merges = merges[1:49152-256-2+1] | |
merges = [tuple(merge.split()) for merge in merges] | |
vocab = list(bytes_to_unicode().values()) | |
vocab = vocab + [v+'</w>' for v in vocab] | |
for merge in merges: | |
vocab.append(''.join(merge)) | |
vocab.extend(['<|startoftext|>', '<|endoftext|>']) | |
self.encoder = dict(zip(vocab, range(len(vocab)))) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} | |
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token[:-1]) + ( token[-1] + '</w>',) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token+'</w>' | |
while True: | |
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word)-1 and word[i+1] == second: | |
new_word.append(first+second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def encode(self, text): | |
bpe_tokens = [] | |
text = whitespace_clean(basic_clean(text)).lower() | |
for token in re.findall(self.pat, text): | |
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |
return bpe_tokens | |
def decode(self, tokens): | |
text = ''.join([self.decoder[token] for token in tokens]) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') | |
return text | |
_tokenizer = _Tokenizer(os.path.expanduser(os.environ['XDG_CACHE_HOME']+"/clip/bpe_simple_vocab_16e6.txt.gz")) | |
######### | |
def _download(url: str, root: str): | |
os.makedirs(root, exist_ok=True) | |
filename = os.path.basename(url) | |
expected_sha256 = url.split("/")[-2] | |
download_target = os.path.join(root, filename) | |
if os.path.exists(download_target) and not os.path.isfile(download_target): | |
raise RuntimeError(f"{download_target} exists and is not a regular file") | |
if os.path.isfile(download_target): | |
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: | |
return download_target | |
else: | |
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") | |
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | |
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: | |
while True: | |
buffer = source.read(8192) | |
if not buffer: | |
break | |
output.write(buffer) | |
loop.update(len(buffer)) | |
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: | |
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") | |
return download_target | |
def _convert_image_to_rgb(image): | |
return image.convert("RGB") | |
def _transform(n_px): | |
return Compose([ | |
Resize(n_px, interpolation=BICUBIC), | |
CenterCrop(n_px), | |
_convert_image_to_rgb, | |
ToTensor(), | |
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
]) | |
def available_models() -> List[str]: | |
"""Returns the names of available CLIP models""" | |
return list(_MODELS.keys()) | |
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", | |
jit: bool = False, download_root: str = None, **kwargs): | |
"""Load a CLIP model | |
Parameters | |
---------- | |
name : str | |
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict | |
device : Union[str, torch.device] | |
The device to put the loaded model | |
jit : bool | |
Whether to load the optimized JIT model or more hackable non-JIT model (default). | |
download_root: str | |
path to download the model files; by default, it uses "~/.cache/clip" | |
Returns | |
------- | |
model : torch.nn.Module | |
The CLIP model | |
preprocess : Callable[[PIL.Image], torch.Tensor] | |
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input | |
""" | |
if name in _MODELS: | |
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) | |
elif os.path.isfile(name): | |
model_path = name | |
else: | |
raise RuntimeError(f"Model {name} not found; available models = {available_models()}") | |
with open(model_path, 'rb') as opened_file: | |
try: | |
# loading JIT archive | |
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() | |
state_dict = None | |
except RuntimeError: | |
# loading saved state dict | |
if jit: | |
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") | |
jit = False | |
state_dict = torch.load(opened_file, map_location="cpu") | |
if not jit: | |
model = build_model(state_dict or model.state_dict(), **kwargs).to(device) | |
if str(device) == "cpu": | |
model.float() | |
return model, _transform(model.visual.input_resolution) | |
# patch the device names | |
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) | |
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] | |
def patch_device(module): | |
try: | |
graphs = [module.graph] if hasattr(module, "graph") else [] | |
except RuntimeError: | |
graphs = [] | |
if hasattr(module, "forward1"): | |
graphs.append(module.forward1.graph) | |
for graph in graphs: | |
for node in graph.findAllNodes("prim::Constant"): | |
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): | |
node.copyAttributes(device_node) | |
model.apply(patch_device) | |
patch_device(model.encode_image) | |
patch_device(model.encode_text) | |
# patch dtype to float32 on CPU | |
if str(device) == "cpu": | |
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) | |
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] | |
float_node = float_input.node() | |
def patch_float(module): | |
try: | |
graphs = [module.graph] if hasattr(module, "graph") else [] | |
except RuntimeError: | |
graphs = [] | |
if hasattr(module, "forward1"): | |
graphs.append(module.forward1.graph) | |
for graph in graphs: | |
for node in graph.findAllNodes("aten::to"): | |
inputs = list(node.inputs()) | |
for i in [1, 2]: # dtype can be the second or third argument to aten::to() | |
if inputs[i].node()["value"] == 5: | |
inputs[i].node().copyAttributes(float_node) | |
model.apply(patch_float) | |
patch_float(model.encode_image) | |
patch_float(model.encode_text) | |
model.float() | |
return model, _transform(model.input_resolution.item()) | |
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]: | |
""" | |
Returns the tokenized representation of given input string(s) | |
Parameters | |
---------- | |
texts : Union[str, List[str]] | |
An input string or a list of input strings to tokenize | |
context_length : int | |
The context length to use; all CLIP models use 77 as the context length | |
truncate: bool | |
Whether to truncate the text in case its encoding is longer than the context length | |
Returns | |
------- | |
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. | |
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. | |
""" | |
if isinstance(texts, str): | |
texts = [texts] | |
sot_token = _tokenizer.encoder["<|startoftext|>"] | |
eot_token = _tokenizer.encoder["<|endoftext|>"] | |
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] | |
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): | |
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |
else: | |
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) | |
for i, tokens in enumerate(all_tokens): | |
if len(tokens) > context_length: | |
if truncate: | |
tokens = tokens[:context_length] | |
tokens[-1] = eot_token | |
else: | |
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |
result[i, :len(tokens)] = torch.tensor(tokens) | |
return result | |
########## | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1): | |
super().__init__() | |
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 | |
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.relu2 = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu3 = nn.ReLU(inplace=True) | |
self.downsample = None | |
self.stride = stride | |
if stride > 1 or inplanes != planes * Bottleneck.expansion: | |
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 | |
self.downsample = nn.Sequential(OrderedDict([ | |
("-1", nn.AvgPool2d(stride)), | |
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), | |
("1", nn.BatchNorm2d(planes * self.expansion)) | |
])) | |
def forward(self, x: torch.Tensor): | |
identity = x | |
out = self.relu1(self.bn1(self.conv1(x))) | |
out = self.relu2(self.bn2(self.conv2(out))) | |
out = self.avgpool(out) | |
out = self.bn3(self.conv3(out)) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu3(out) | |
return out | |
class AttentionPool2d(nn.Module): | |
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): | |
super().__init__() | |
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) | |
self.k_proj = nn.Linear(embed_dim, embed_dim) | |
self.q_proj = nn.Linear(embed_dim, embed_dim) | |
self.v_proj = nn.Linear(embed_dim, embed_dim) | |
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |
self.num_heads = num_heads | |
def forward(self, x): | |
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC | |
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC | |
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC | |
x, _ = F.multi_head_attention_forward( | |
query=x[:1], key=x, value=x, | |
embed_dim_to_check=x.shape[-1], | |
num_heads=self.num_heads, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
in_proj_weight=None, | |
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), | |
bias_k=None, | |
bias_v=None, | |
add_zero_attn=False, | |
dropout_p=0, | |
out_proj_weight=self.c_proj.weight, | |
out_proj_bias=self.c_proj.bias, | |
use_separate_proj_weight=True, | |
training=self.training, | |
need_weights=False | |
) | |
return x.squeeze(0) | |
class ModifiedResNet(nn.Module): | |
""" | |
A ResNet class that is similar to torchvision's but contains the following changes: | |
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. | |
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 | |
- The final pooling layer is a QKV attention instead of an average pool | |
""" | |
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): | |
super().__init__() | |
self.output_dim = output_dim | |
self.input_resolution = input_resolution | |
# the 3-layer stem | |
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(width // 2) | |
self.relu1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(width // 2) | |
self.relu2 = nn.ReLU(inplace=True) | |
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(width) | |
self.relu3 = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(2) | |
# residual layers | |
self._inplanes = width # this is a *mutable* variable used during construction | |
self.layer1 = self._make_layer(width, layers[0]) | |
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) | |
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) | |
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) | |
embed_dim = width * 32 # the ResNet feature dimension | |
self.embed_dim = embed_dim | |
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) | |
def _make_layer(self, planes, blocks, stride=1): | |
layers = [Bottleneck(self._inplanes, planes, stride)] | |
self._inplanes = planes * Bottleneck.expansion | |
for _ in range(1, blocks): | |
layers.append(Bottleneck(self._inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
def stem(x): | |
x = self.relu1(self.bn1(self.conv1(x))) | |
x = self.relu2(self.bn2(self.conv2(x))) | |
x = self.relu3(self.bn3(self.conv3(x))) | |
x = self.avgpool(x) | |
return x | |
x = x.type(self.conv1.weight.dtype) | |
x = stem(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.attnpool(x) | |
return x | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
ret = super().forward(x.type(torch.float32)) | |
return ret.type(orig_type) | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model)) | |
])) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
def attention(self, x: torch.Tensor): | |
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
def forward(self, x: torch.Tensor): | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class Transformer(nn.Module): | |
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) | |
def forward(self, x: torch.Tensor): | |
return self.resblocks(x) | |
class VisionTransformer(nn.Module): | |
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, | |
output_dim: int, return_hidden_state=False): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) | |
scale = width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) | |
self.ln_pre = LayerNorm(width) | |
self.transformer = Transformer(width, layers, heads) | |
self.transformer.resblocks = nn.ModuleList([*self.transformer.resblocks]) | |
self.ln_post = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
self.return_hidden_state = return_hidden_state | |
self.embed_dim = width | |
def forward(self, x: torch.Tensor, external_features=None): | |
all_hidden_states = () if self.return_hidden_state else None | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.positional_embedding.to(x.dtype) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
# x = self.transformer(x) | |
for i,blk in enumerate(self.transformer.resblocks): | |
x = blk(x) | |
if self.return_hidden_state: | |
all_hidden_states = all_hidden_states + (self.ln_post(x.permute(1, 0, 2)),) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_post(x) | |
# x = self.ln_post(x[:, 0, :]) | |
# if self.proj is not None: | |
# x = x @ self.proj | |
if self.return_hidden_state: | |
return x, all_hidden_states | |
else: | |
return x | |
class CLIP(nn.Module): | |
def __init__(self, | |
embed_dim: int, | |
# vision | |
image_resolution: int, | |
vision_layers: Union[Tuple[int, int, int, int], int], | |
vision_width: int, | |
vision_patch_size: int, | |
# text | |
context_length: int, | |
vocab_size: int, | |
transformer_width: int, | |
transformer_heads: int, | |
transformer_layers: int, | |
return_hidden_state=False, | |
): | |
super().__init__() | |
self.context_length = context_length | |
if isinstance(vision_layers, (tuple, list)): | |
vision_heads = vision_width * 32 // 64 | |
self.visual = ModifiedResNet( | |
layers=vision_layers, | |
output_dim=embed_dim, | |
heads=vision_heads, | |
input_resolution=image_resolution, | |
width=vision_width | |
) | |
else: | |
vision_heads = vision_width // 64 | |
self.visual = VisionTransformer( | |
input_resolution=image_resolution, | |
patch_size=vision_patch_size, | |
width=vision_width, | |
layers=vision_layers, | |
heads=vision_heads, | |
output_dim=embed_dim, | |
return_hidden_state=return_hidden_state | |
) | |
self.transformer = Transformer( | |
width=transformer_width, | |
layers=transformer_layers, | |
heads=transformer_heads, | |
attn_mask=self.build_attention_mask() | |
) | |
self.vocab_size = vocab_size | |
self.token_embedding = nn.Embedding(vocab_size, transformer_width) | |
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) | |
self.ln_final = LayerNorm(transformer_width) | |
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
self.initialize_parameters() | |
def initialize_parameters(self): | |
nn.init.normal_(self.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.positional_embedding, std=0.01) | |
if isinstance(self.visual, ModifiedResNet): | |
if self.visual.attnpool is not None: | |
std = self.visual.attnpool.c_proj.in_features ** -0.5 | |
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) | |
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: | |
for name, param in resnet_block.named_parameters(): | |
if name.endswith("bn3.weight"): | |
nn.init.zeros_(param) | |
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) | |
attn_std = self.transformer.width ** -0.5 | |
fc_std = (2 * self.transformer.width) ** -0.5 | |
for block in self.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |
if self.text_projection is not None: | |
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) | |
def build_attention_mask(self): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(self.context_length, self.context_length) | |
mask.fill_(float("-inf")) | |
mask.triu_(1) # zero out the lower diagonal | |
return mask | |
def dtype(self): | |
return self.visual.conv1.weight.dtype | |
def encode_image(self, image): | |
return self.visual(image.type(self.dtype)) | |
def encode_text(self, text): | |
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding.type(self.dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x).type(self.dtype) | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return x | |
def forward(self, image, text): | |
image_features = self.encode_image(image) | |
text_features = self.encode_text(text) | |
# normalized features | |
image_features = image_features / image_features.norm(dim=1, keepdim=True) | |
text_features = text_features / text_features.norm(dim=1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale = self.logit_scale.exp() | |
logits_per_image = logit_scale * image_features @ text_features.t() | |
logits_per_text = logits_per_image.t() | |
# shape = [global_batch_size, global_batch_size] | |
return logits_per_image, logits_per_text | |
def convert_weights(model: nn.Module): | |
"""Convert applicable model parameters to fp16""" | |
def _convert_weights_to_fp16(l): | |
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |
l.weight.data = l.weight.data.half() | |
if l.bias is not None: | |
l.bias.data = l.bias.data.half() | |
if isinstance(l, nn.MultiheadAttention): | |
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: | |
tensor = getattr(l, attr) | |
if tensor is not None: | |
tensor.data = tensor.data.half() | |
for name in ["text_projection", "proj"]: | |
if hasattr(l, name): | |
attr = getattr(l, name) | |
if attr is not None: | |
attr.data = attr.data.half() | |
model.apply(_convert_weights_to_fp16) | |
def build_model(state_dict: dict, **kwargs): | |
vit = "visual.proj" in state_dict | |
if vit: | |
vision_width = state_dict["visual.conv1.weight"].shape[0] | |
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) | |
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) | |
image_resolution = vision_patch_size * grid_size | |
else: | |
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] | |
vision_layers = tuple(counts) | |
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) | |
vision_patch_size = None | |
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] | |
image_resolution = output_width * 32 | |
embed_dim = state_dict["text_projection"].shape[1] | |
context_length = state_dict["positional_embedding"].shape[0] | |
vocab_size = state_dict["token_embedding.weight"].shape[0] | |
transformer_width = state_dict["ln_final.weight"].shape[0] | |
transformer_heads = transformer_width // 64 | |
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks"))) | |
model = CLIP( | |
embed_dim, | |
image_resolution, vision_layers, vision_width, vision_patch_size, | |
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, **kwargs | |
) | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
if key in state_dict: | |
del state_dict[key] | |
convert_weights(model) | |
model.load_state_dict(state_dict) | |
return model.eval() | |