UnIVAL / app.py
mshukor's picture
Update app.py
c7f5f45
raw
history blame
18.5 kB
import os
os.system('cd fairseq;'
'pip install ./; cd ..')
os.system('ls -l')
import torch
import numpy as np
import gradio as gr
import cv2
from PIL import Image
from torchvision import transforms
from fairseq import utils, tasks, options
from fairseq import checkpoint_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from tasks.mm_tasks.caption import CaptionTask
from tasks.mm_tasks.refcoco import RefcocoTask
from tasks.mm_tasks.vqa_gen import VqaGenTask
# video
from data.video_utils import VIDEO_READER_FUNCS
# audio
import torchaudio
from data.audio_utils import get_audio_features, int16_to_float32, float32_to_int16, AUDIO_CFG
def move2gpu(models, cfg):
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
def construct_transform(patch_image_size):
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
return patch_resize_transform
# Register tasks
tasks.register_task('caption', CaptionTask)
tasks.register_task('refcoco', RefcocoTask)
tasks.register_task('vqa_gen', VqaGenTask)
tasks.register_task('video_caption', CaptionTask)
tasks.register_task('audio_caption', CaptionTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False
# download checkpoints
os.system('mkdir -p checkpoints; ')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_s2_hs/checkpoint1.pt; '
# 'mkdir -p checkpoints/unival_s2_hs; mv checkpoint1.pt checkpoints/unival_s2_hs/')
os.system('wget https://data.isir.upmc.fr/unival/models/unival_vqa/checkpoint_best.pt; '
'mkdir -p checkpoints/unival_vqa; mv checkpoint_best.pt checkpoints/unival_vqa/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_caption_stage_1/checkpoint_best_test.pt; '
# 'mkdir -p checkpoints/unival_caption_stage_1; mv checkpoint_best_test.pt checkpoints/unival_caption_stage_1/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_refcocog/checkpoint_best.pt; '
# 'mkdir -p checkpoints/unival_refcocog; mv checkpoint_best.pt checkpoints/unival_refcocog/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_video_caption_stage_1/checkpoint_best.pt; '
# 'mkdir -p checkpoints/unival_video_caption_stage_1; mv checkpoint_best.pt checkpoints/unival_video_caption_stage_1/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_audio_caption/checkpoint_best.pt; '
# 'mkdir -p checkpoints/unival_audio_caption; mv checkpoint_best.pt checkpoints/unival_audio_caption/')
# Load ckpt & config for Image Captioning
checkpoint_path = 'checkpoints/unival_caption_stage_1/checkpoint_best_test.pt'
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None}
caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=caption_overrides
)
# Load ckpt & config for Video Captioning
checkpoint_path = 'checkpoints/unival_video_caption_stage_1/checkpoint_best.pt'
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None}
video_caption_models, video_caption_cfg, video_caption_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=caption_overrides
)
# Load ckpt & config for Audio Captioning
checkpoint_path = 'checkpoints/unival_audio_caption/checkpoint_best.pt'
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None, "audio_model_path": None}
audio_caption_models, audio_caption_cfg, audio_caption_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=caption_overrides
)
# Load ckpt & config for Refcoco
checkpoint_path = 'checkpoints/unival_refcocog/checkpoint_best.pt'
refcoco_overrides = {"bpe_dir":"utils/BPE", "video_model_path": None, "resnet_model_path": None}
refcoco_models, refcoco_cfg, refcoco_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=refcoco_overrides
)
refcoco_cfg.common.seed = 7
refcoco_cfg.generation.beam = 5
refcoco_cfg.generation.min_len = 4
refcoco_cfg.generation.max_len_a = 0
refcoco_cfg.generation.max_len_b = 4
refcoco_cfg.generation.no_repeat_ngram_size = 3
# Load pretrained ckpt & config for VQA
checkpoint_path = 'checkpoints/unival_vqa/checkpoint_best.pt'
overrides={"video_model_path": None, "resnet_model_path": None}
parser = options.get_generation_parser()
input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE"]
args = options.parse_args_and_arch(parser, input_args)
vqa_cfg = convert_namespace_to_omegaconf(args)
vqa_task = tasks.setup_task(vqa_cfg.task)
vqa_models, vqa_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(vqa_cfg.common_eval.path),
task=vqa_task,
arg_overrides=overrides
)
# Load pretrained ckpt & config for Generic Interface
checkpoint_path = 'checkpoints/unival_s2_hs/checkpoint1.pt'
parser = options.get_generation_parser()
input_args = ["", "--task=refcoco", "--beam=10", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE", "--no-repeat-ngram-size=3", "--patch-image-size=384"]
args = options.parse_args_and_arch(parser, input_args)
general_cfg = convert_namespace_to_omegaconf(args)
general_task = tasks.setup_task(general_cfg.task)
overrides={"video_model_path": None, "resnet_model_path": None}
general_models, general_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(general_cfg.common_eval.path),
task=general_task,
arg_overrides=overrides
)
# move models to gpu
move2gpu(caption_models, caption_cfg)
move2gpu(refcoco_models, refcoco_cfg)
move2gpu(vqa_models, vqa_cfg)
move2gpu(general_models, general_cfg)
move2gpu(video_caption_models, general_cfg)
move2gpu(audio_general_models, general_cfg)
# # Initialize generator
caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
refcoco_generator = refcoco_task.build_generator(refcoco_models, refcoco_cfg.generation)
vqa_generator = vqa_task.build_generator(vqa_models, vqa_cfg.generation)
vqa_generator.zero_shot = True
vqa_generator.constraint_trie = None
general_generator = general_task.build_generator(general_models, general_cfg.generation)
video_caption_generator = caption_task.build_generator(video_caption_models, video_caption_cfg.generation)
audio_caption_generator = caption_task.build_generator(audio_caption_models, audio_caption_cfg.generation)
# Construct image transforms
caption_transform = construct_transform(caption_cfg.task.patch_image_size)
refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
vqa_transform = construct_transform(vqa_cfg.task.patch_image_size)
general_transform = construct_transform(general_cfg.task.patch_image_size)
# Text preprocess
bos_item = torch.LongTensor([general_task.src_dict.bos()])
eos_item = torch.LongTensor([general_task.src_dict.eos()])
pad_idx = general_task.src_dict.pad()
# Video process
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
patch_video_resize_transform = transforms.Compose([
transforms.CenterCrop(cfg.task.patch_frame_size),
type_transform,
transforms.Normalize(mean=mean, std=std),
])
# video process
video_reader = VIDEO_READER_FUNCS['decord']
def process_video(video_path, max_num_frames=16, num_frames=16, sample_type='rand',):
# video
data_path = os.path.join(video_path)
frames, frame_indices, video_duration = video_reader(
data_path, num_frames, sample_type, max_num_frames=max_num_frames
)
patch_video = patch_video_resize_transform(frames)
patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
return patch_video.unsqueeze(0)
def construct_video_sample(video_path):
patch_video = process_video(video_path, max_num_frames=16, num_frames=cfg.task.num_frames, sample_type=cfg.task.sample_type,)
patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size))
patch_type = torch.tensor([1])
patch_mask = torch.tensor([True])
src_text = encode_text(" what does the video describe?", append_bos=True, append_eos=True).unsqueeze(0)
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_text,
"src_lengths": src_length,
"patch_videos": patch_video,
"patch_images": patch_image,
"patch_masks": patch_mask,
"patch_types": patch_type,
}
}
return sample
#####
# audio process
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
def process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG):
# audio
data_path = audio_path
audio_data, orig_sr = torchaudio.load(data_path)
audio_data = torchaudio.transforms.Resample(orig_sr, sample_rate)(audio_data[0])
sample = {}
sample = get_audio_features(
sample, audio_data, max_audio_len,
data_truncating='rand_trunc',
data_filling='repeatpad',
audio_cfg=audio_cfg
)
waveform = sample['waveform']
patch_audio = waveform
return patch_audio.unsqueeze(0)
def construct_audio_sample(audio_path):
patch_audio = process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG)
patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size))
patch_type = torch.tensor([2])
patch_mask = torch.tensor([True])
src_text = encode_text(" what does the image describe?", append_bos=True, append_eos=True).unsqueeze(0)
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_text,
"src_lengths": src_length,
"patch_images": patch_image,
"patch_audios": patch_audio,
"patch_masks": patch_mask,
"patch_types": patch_type,
}
}
return sample
#####
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.bos, generator.eos}
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
token_result = []
bin_result = []
img_result = []
for token in x.strip().split():
if token.startswith('<bin_'):
bin_result.append(token)
elif token.startswith('<code_'):
img_result.append(token)
else:
if bpe is not None:
token = bpe.decode('{}'.format(token))
if tokenizer is not None:
token = tokenizer.decode(token)
if token.startswith(' ') or len(token_result) == 0:
token_result.append(token.strip())
else:
token_result[-1] += token
return ' '.join(token_result), ' '.join(bin_result), ' '.join(img_result)
def bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg):
bin_list = [int(bin[5:-1]) for bin in bins.strip().split()]
coord_list = []
coord_list += [bin_list[0] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
coord_list += [bin_list[1] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
coord_list += [bin_list[2] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
coord_list += [bin_list[3] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
return coord_list
def encode_text(text, length=None, append_bos=False, append_eos=False):
line = [
general_task.bpe.encode(' {}'.format(word.strip()))
if not word.startswith('<code_') and not word.startswith('<bin_') else word
for word in text.strip().split()
]
line = ' '.join(line)
s = general_task.tgt_dict.encode_line(
line=line,
add_if_not_exist=False,
append_eos=False
).long()
if length is not None:
s = s[:length]
if append_bos:
s = torch.cat([bos_item, s])
if append_eos:
s = torch.cat([s, eos_item])
return s
# image
def construct_sample(image: Image, instruction: str, transform):
patch_image = transform(image).unsqueeze(0)
patch_mask = torch.tensor([True])
instruction = encode_text(' {}'.format(instruction.lower().strip()), append_bos=True, append_eos=True).unsqueeze(0)
instruction_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in instruction])
sample = {
"id": np.array(['42']),
"net_input": {
"src_tokens": instruction,
"src_lengths": instruction_length,
"patch_images": patch_image,
"patch_masks": patch_mask,
}
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
def inference(image, task_type, instruction):
if task_type == 'Image Captioning':
task = caption_task
models = caption_models
generator = caption_generator
instruction = 'what does the image describe?'
transform = caption_transform
cfg = caption_cfg
elif task_type == 'Video Captioning':
task = video_caption_task
models = video_caption_models
generator = video_caption_generator
instruction = 'what does the video describe?'
cfg = video_caption_cfg
elif task_type == 'Audio Captioning':
task = audio_caption_task
models = audio_caption_models
generator = audio_caption_generator
instruction = 'what does the audio describe?'
cfg = audio_caption_cfg
elif task_type == 'Visual Question Answering':
task = vqa_task
models = vqa_models
generator = vqa_generator
transform = vqa_transform
cfg = vqa_cfg
elif task_type == 'Visual Grounding':
task = refcoco_task
models = refcoco_models
generator = refcoco_generator
instruction = 'which region does the text " {} " describe?'.format(instruction)
transform = refcoco_transform
cfg = refcoco_cfg
elif task_type == 'General':
task = general_task
models = general_models
generator = general_generator
transform = general_transform
cfg = general_cfg
elif task_type == 'General Video':
task = video_general_task
models = video_general_models
generator = video_general_generator
transform = general_transform
cfg = video_general_cfg
else:
raise NotImplementedError
# Construct input sample & preprocess for GPU if cuda available
if "Video" in task_type:
sample = construct_video_sample(video)
elif "Audio" in task_type:
sample = construct_audio_sample(audio)
else:
sample = construct_sample(image, instruction, transform)
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
# Generate result
with torch.no_grad():
hypos = task.inference_step(generator, models, sample)
tokens, bins, imgs = decode_fn(hypos[0][0]["tokens"], task.tgt_dict, task.bpe, generator)
if bins.strip() != '':
w, h = image.size
w_resize_ratio = task.cfg.patch_image_size / w
h_resize_ratio = task.cfg.patch_image_size / h
img = np.asarray(image)
coord_list = bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg)
cv2.rectangle(
img,
(int(coord_list[0]), int(coord_list[1])),
(int(coord_list[2]), int(coord_list[3])),
(0, 255, 0),
3
)
return img, None
else:
return None, tokens
inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = [gr.outputs.Image(type='pil'), 'text']
examples = [
['examples/images/soccer.jpg', 'Image Captioning', None],
['examples/images/ski.jpg', 'Visual Question Answering', 'what does the woman wearing black do?'],
['examples/images/banana.jpg', 'Visual Grounding', 'the detached banana'],
['examples/images/skateboard.jpg', 'General', 'which region does the text " a yellow bird " describe?'],
['examples/images/baseball.jpg', 'General', 'what color is the left car?']
]
title = "UnIVAL"
description = "Gradio Demo for UnIVAL: "
article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2202.03052' target='_blank'>Paper</a> | <a href='https://github.com/OFA-Sys/OFA' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()