Spaces:
Runtime error
Runtime error
import copy | |
from typing import Optional | |
from typing import Tuple | |
from typing import Union | |
import logging | |
import humanfriendly | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
try: | |
from torch_complex.tensor import ComplexTensor | |
except: | |
print("Please install torch_complex firstly") | |
from funasr_detach.frontends.utils.log_mel import LogMel | |
from funasr_detach.frontends.utils.stft import Stft | |
from funasr_detach.frontends.utils.frontend import Frontend | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
class DefaultFrontend(nn.Module): | |
"""Conventional frontend structure for ASR. | |
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN | |
""" | |
def __init__( | |
self, | |
fs: Union[int, str] = 16000, | |
n_fft: int = 512, | |
win_length: int = None, | |
hop_length: int = 128, | |
window: Optional[str] = "hann", | |
center: bool = True, | |
normalized: bool = False, | |
onesided: bool = True, | |
n_mels: int = 80, | |
fmin: int = None, | |
fmax: int = None, | |
htk: bool = False, | |
frontend_conf: Optional[dict] = None, | |
apply_stft: bool = True, | |
use_channel: int = None, | |
): | |
super().__init__() | |
if isinstance(fs, str): | |
fs = humanfriendly.parse_size(fs) | |
# Deepcopy (In general, dict shouldn't be used as default arg) | |
frontend_conf = copy.deepcopy(frontend_conf) | |
self.hop_length = hop_length | |
if apply_stft: | |
self.stft = Stft( | |
n_fft=n_fft, | |
win_length=win_length, | |
hop_length=hop_length, | |
center=center, | |
window=window, | |
normalized=normalized, | |
onesided=onesided, | |
) | |
else: | |
self.stft = None | |
self.apply_stft = apply_stft | |
if frontend_conf is not None: | |
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf) | |
else: | |
self.frontend = None | |
self.logmel = LogMel( | |
fs=fs, | |
n_fft=n_fft, | |
n_mels=n_mels, | |
fmin=fmin, | |
fmax=fmax, | |
htk=htk, | |
) | |
self.n_mels = n_mels | |
self.use_channel = use_channel | |
self.frontend_type = "default" | |
def output_size(self) -> int: | |
return self.n_mels | |
def forward( | |
self, input: torch.Tensor, input_lengths: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# 1. Domain-conversion: e.g. Stft: time -> time-freq | |
if self.stft is not None: | |
input_stft, feats_lens = self._compute_stft(input, input_lengths) | |
else: | |
input_stft = ComplexTensor(input[..., 0], input[..., 1]) | |
feats_lens = input_lengths | |
# 2. [Option] Speech enhancement | |
if self.frontend is not None: | |
assert isinstance(input_stft, ComplexTensor), type(input_stft) | |
# input_stft: (Batch, Length, [Channel], Freq) | |
input_stft, _, mask = self.frontend(input_stft, feats_lens) | |
# 3. [Multi channel case]: Select a channel | |
if input_stft.dim() == 4: | |
# h: (B, T, C, F) -> h: (B, T, F) | |
if self.training: | |
if self.use_channel is not None: | |
input_stft = input_stft[:, :, self.use_channel, :] | |
else: | |
# Select 1ch randomly | |
ch = np.random.randint(input_stft.size(2)) | |
input_stft = input_stft[:, :, ch, :] | |
else: | |
# Use the first channel | |
input_stft = input_stft[:, :, 0, :] | |
# 4. STFT -> Power spectrum | |
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F) | |
input_power = input_stft.real**2 + input_stft.imag**2 | |
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank | |
# input_power: (Batch, [Channel,] Length, Freq) | |
# -> input_feats: (Batch, Length, Dim) | |
input_feats, _ = self.logmel(input_power, feats_lens) | |
return input_feats, feats_lens | |
def _compute_stft( | |
self, input: torch.Tensor, input_lengths: torch.Tensor | |
) -> torch.Tensor: | |
input_stft, feats_lens = self.stft(input, input_lengths) | |
assert input_stft.dim() >= 4, input_stft.shape | |
# "2" refers to the real/imag parts of Complex | |
assert input_stft.shape[-1] == 2, input_stft.shape | |
# Change torch.Tensor to ComplexTensor | |
# input_stft: (..., F, 2) -> (..., F) | |
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1]) | |
return input_stft, feats_lens | |
class MultiChannelFrontend(nn.Module): | |
"""Conventional frontend structure for ASR. | |
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN | |
""" | |
def __init__( | |
self, | |
fs: Union[int, str] = 16000, | |
n_fft: int = 512, | |
win_length: int = None, | |
hop_length: int = None, | |
frame_length: int = None, | |
frame_shift: int = None, | |
window: Optional[str] = "hann", | |
center: bool = True, | |
normalized: bool = False, | |
onesided: bool = True, | |
n_mels: int = 80, | |
fmin: int = None, | |
fmax: int = None, | |
htk: bool = False, | |
frontend_conf: Optional[dict] = None, | |
apply_stft: bool = True, | |
use_channel: int = None, | |
lfr_m: int = 1, | |
lfr_n: int = 1, | |
cmvn_file: str = None, | |
mc: bool = True, | |
): | |
super().__init__() | |
if isinstance(fs, str): | |
fs = humanfriendly.parse_size(fs) | |
# Deepcopy (In general, dict shouldn't be used as default arg) | |
frontend_conf = copy.deepcopy(frontend_conf) | |
if win_length is None and hop_length is None: | |
self.win_length = frame_length * 16 | |
self.hop_length = frame_shift * 16 | |
elif frame_length is None and frame_shift is None: | |
self.win_length = self.win_length | |
self.hop_length = self.hop_length | |
else: | |
logging.error( | |
"Only one of (win_length, hop_length) and (frame_length, frame_shift)" | |
"can be set." | |
) | |
exit(1) | |
if apply_stft: | |
self.stft = Stft( | |
n_fft=n_fft, | |
win_length=self.win_length, | |
hop_length=self.hop_length, | |
center=center, | |
window=window, | |
normalized=normalized, | |
onesided=onesided, | |
) | |
else: | |
self.stft = None | |
self.apply_stft = apply_stft | |
if frontend_conf is not None: | |
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf) | |
else: | |
self.frontend = None | |
self.logmel = LogMel( | |
fs=fs, | |
n_fft=n_fft, | |
n_mels=n_mels, | |
fmin=fmin, | |
fmax=fmax, | |
htk=htk, | |
) | |
self.n_mels = n_mels | |
self.use_channel = use_channel | |
self.mc = mc | |
if not self.mc: | |
if self.use_channel is not None: | |
logging.info("use the channel %d" % (self.use_channel)) | |
else: | |
logging.info("random select channel") | |
self.cmvn_file = cmvn_file | |
if self.cmvn_file is not None: | |
mean, std = self._load_cmvn(self.cmvn_file) | |
self.register_buffer("mean", torch.from_numpy(mean)) | |
self.register_buffer("std", torch.from_numpy(std)) | |
self.frontend_type = "multichannelfrontend" | |
def output_size(self) -> int: | |
return self.n_mels | |
def forward( | |
self, input: torch.Tensor, input_lengths: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# 1. Domain-conversion: e.g. Stft: time -> time-freq | |
# import pdb;pdb.set_trace() | |
if self.stft is not None: | |
input_stft, feats_lens = self._compute_stft(input, input_lengths) | |
else: | |
input_stft = ComplexTensor(input[..., 0], input[..., 1]) | |
feats_lens = input_lengths | |
# 2. [Option] Speech enhancement | |
if self.frontend is not None: | |
assert isinstance(input_stft, ComplexTensor), type(input_stft) | |
# input_stft: (Batch, Length, [Channel], Freq) | |
input_stft, _, mask = self.frontend(input_stft, feats_lens) | |
# 3. [Multi channel case]: Select a channel(sa_asr) | |
if input_stft.dim() == 4 and not self.mc: | |
# h: (B, T, C, F) -> h: (B, T, F) | |
if self.training: | |
if self.use_channel is not None: | |
input_stft = input_stft[:, :, self.use_channel, :] | |
else: | |
# Select 1ch randomly | |
ch = np.random.randint(input_stft.size(2)) | |
input_stft = input_stft[:, :, ch, :] | |
else: | |
# Use the first channel | |
input_stft = input_stft[:, :, 0, :] | |
# 4. STFT -> Power spectrum | |
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F) | |
input_power = input_stft.real**2 + input_stft.imag**2 | |
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank | |
# input_power: (Batch, [Channel,] Length, Freq) | |
# -> input_feats: (Batch, Length, Dim) | |
input_feats, _ = self.logmel(input_power, feats_lens) | |
if self.mc: | |
# MFCCA | |
if input_feats.dim() == 4: | |
bt = input_feats.size(0) | |
channel_size = input_feats.size(2) | |
input_feats = ( | |
input_feats.transpose(1, 2) | |
.reshape(bt * channel_size, -1, 80) | |
.contiguous() | |
) | |
feats_lens = feats_lens.repeat(1, channel_size).squeeze() | |
else: | |
channel_size = 1 | |
return input_feats, feats_lens, channel_size | |
else: | |
# 6. Apply CMVN | |
if self.cmvn_file is not None: | |
if feats_lens is None: | |
feats_lens = input_feats.new_full( | |
[input_feats.size(0)], input_feats.size(1) | |
) | |
self.mean = self.mean.to(input_feats.device, input_feats.dtype) | |
self.std = self.std.to(input_feats.device, input_feats.dtype) | |
mask = make_pad_mask(feats_lens, input_feats, 1) | |
if input_feats.requires_grad: | |
input_feats = input_feats + self.mean | |
else: | |
input_feats += self.mean | |
if input_feats.requires_grad: | |
input_feats = input_feats.masked_fill(mask, 0.0) | |
else: | |
input_feats.masked_fill_(mask, 0.0) | |
input_feats *= self.std | |
return input_feats, feats_lens | |
def _compute_stft( | |
self, input: torch.Tensor, input_lengths: torch.Tensor | |
) -> torch.Tensor: | |
input_stft, feats_lens = self.stft(input, input_lengths) | |
assert input_stft.dim() >= 4, input_stft.shape | |
# "2" refers to the real/imag parts of Complex | |
assert input_stft.shape[-1] == 2, input_stft.shape | |
# Change torch.Tensor to ComplexTensor | |
# input_stft: (..., F, 2) -> (..., F) | |
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1]) | |
return input_stft, feats_lens | |
def _load_cmvn(self, cmvn_file): | |
with open(cmvn_file, "r", encoding="utf-8") as f: | |
lines = f.readlines() | |
means_list = [] | |
vars_list = [] | |
for i in range(len(lines)): | |
line_item = lines[i].split() | |
if line_item[0] == "<AddShift>": | |
line_item = lines[i + 1].split() | |
if line_item[0] == "<LearnRateCoef>": | |
add_shift_line = line_item[3 : (len(line_item) - 1)] | |
means_list = list(add_shift_line) | |
continue | |
elif line_item[0] == "<Rescale>": | |
line_item = lines[i + 1].split() | |
if line_item[0] == "<LearnRateCoef>": | |
rescale_line = line_item[3 : (len(line_item) - 1)] | |
vars_list = list(rescale_line) | |
continue | |
means = np.array(means_list).astype(np.float) | |
vars = np.array(vars_list).astype(np.float) | |
return means, vars | |