Spaces:
Running
on
Zero
Running
on
Zero
mrfakename
commited on
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- src/f5_tts/api.py +2 -2
- src/f5_tts/infer/SHARED.md +3 -1
- src/f5_tts/infer/utils_infer.py +23 -18
src/f5_tts/api.py
CHANGED
@@ -49,10 +49,10 @@ class F5TTS:
|
|
49 |
self.load_vocoder_model(vocoder_name, local_path=local_path)
|
50 |
self.load_ema_model(model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema, local_path=local_path)
|
51 |
|
52 |
-
def load_vocoder_model(self, vocoder_name, local_path):
|
53 |
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
|
54 |
|
55 |
-
def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, local_path):
|
56 |
if model_type == "F5-TTS":
|
57 |
if not ckpt_file:
|
58 |
if mel_spec_type == "vocos":
|
|
|
49 |
self.load_vocoder_model(vocoder_name, local_path=local_path)
|
50 |
self.load_ema_model(model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema, local_path=local_path)
|
51 |
|
52 |
+
def load_vocoder_model(self, vocoder_name, local_path=None):
|
53 |
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
|
54 |
|
55 |
+
def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, local_path=None):
|
56 |
if model_type == "F5-TTS":
|
57 |
if not ckpt_file:
|
58 |
if mel_spec_type == "vocos":
|
src/f5_tts/infer/SHARED.md
CHANGED
@@ -18,6 +18,8 @@
|
|
18 |
- [Multilingual](#multilingual)
|
19 |
- [F5-TTS Base @ pretrain @ zh \& en](#f5-tts-base--pretrain--zh--en)
|
20 |
- [Mandarin](#mandarin)
|
|
|
|
|
21 |
- [English](#english)
|
22 |
- [French](#french)
|
23 |
- [French LibriVox @ finetune @ fr](#french-librivox--finetune--fr)
|
@@ -67,6 +69,6 @@ MODEL_CKPT: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/model_last_reduced.p
|
|
67 |
VOCAB_FILE: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt
|
68 |
```
|
69 |
|
70 |
-
- Online Inference with
|
71 |
- [Tutorial video to train a new language model](https://www.youtube.com/watch?v=UO4usaOojys).
|
72 |
- [Discussion about this training can be found here](https://github.com/SWivid/F5-TTS/issues/434).
|
|
|
18 |
- [Multilingual](#multilingual)
|
19 |
- [F5-TTS Base @ pretrain @ zh \& en](#f5-tts-base--pretrain--zh--en)
|
20 |
- [Mandarin](#mandarin)
|
21 |
+
- [Japanese](#japanese)
|
22 |
+
- [F5-TTS Base @ pretrain/finetune @ ja](#f5-tts-base--pretrainfinetune--ja)
|
23 |
- [English](#english)
|
24 |
- [French](#french)
|
25 |
- [French LibriVox @ finetune @ fr](#french-librivox--finetune--fr)
|
|
|
69 |
VOCAB_FILE: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt
|
70 |
```
|
71 |
|
72 |
+
- [Online Inference with Hugging Face Space](https://huggingface.co/spaces/RASPIAUDIO/f5-tts_french).
|
73 |
- [Tutorial video to train a new language model](https://www.youtube.com/watch?v=UO4usaOojys).
|
74 |
- [Discussion about this training can be found here](https://github.com/SWivid/F5-TTS/issues/434).
|
src/f5_tts/infer/utils_infer.py
CHANGED
@@ -90,36 +90,41 @@ def chunk_text(text, max_chars=135):
|
|
90 |
|
91 |
|
92 |
# load vocoder
|
93 |
-
def load_vocoder(vocoder_name="vocos", is_local=False, local_path=
|
94 |
if vocoder_name == "vocos":
|
95 |
-
|
|
|
96 |
print(f"Load vocos from local path {local_path}")
|
97 |
-
|
98 |
-
|
99 |
-
config_path = hf_hub_download(
|
100 |
-
repo_id=repo_id, cache_dir=local_path, filename="config.yaml", revision=revision
|
101 |
-
)
|
102 |
-
model_path = hf_hub_download(
|
103 |
-
repo_id=repo_id, cache_dir=local_path, filename="pytorch_model.bin", revision=revision
|
104 |
-
)
|
105 |
-
vocoder = Vocos.from_hparams(config_path=config_path)
|
106 |
-
state_dict = torch.load(model_path, map_location="cpu")
|
107 |
-
vocoder.load_state_dict(state_dict)
|
108 |
-
vocoder = vocoder.eval().to(device)
|
109 |
else:
|
110 |
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
elif vocoder_name == "bigvgan":
|
113 |
try:
|
114 |
from third_party.BigVGAN import bigvgan
|
115 |
except ImportError:
|
116 |
print("You need to follow the README to init submodule and change the BigVGAN source code.")
|
117 |
-
if is_local:
|
118 |
"""download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
|
119 |
-
local_path = snapshot_download(repo_id="nvidia/bigvgan_v2_24khz_100band_256x", cache_dir=local_path)
|
120 |
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
121 |
else:
|
122 |
-
|
|
|
123 |
|
124 |
vocoder.remove_weight_norm()
|
125 |
vocoder = vocoder.eval().to(device)
|
|
|
90 |
|
91 |
|
92 |
# load vocoder
|
93 |
+
def load_vocoder(vocoder_name="vocos", is_local=False, local_path=None, device=device):
|
94 |
if vocoder_name == "vocos":
|
95 |
+
# vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
|
96 |
+
if is_local and local_path is not None:
|
97 |
print(f"Load vocos from local path {local_path}")
|
98 |
+
config_path = f"{local_path}/config.yaml"
|
99 |
+
model_path = f"{local_path}/pytorch_model.bin"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
else:
|
101 |
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
102 |
+
repo_id = "charactr/vocos-mel-24khz"
|
103 |
+
config_path = hf_hub_download(repo_id=repo_id, cache_dir=local_path, filename="config.yaml")
|
104 |
+
model_path = hf_hub_download(repo_id=repo_id, cache_dir=local_path, filename="pytorch_model.bin")
|
105 |
+
vocoder = Vocos.from_hparams(config_path)
|
106 |
+
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
107 |
+
from vocos.feature_extractors import EncodecFeatures
|
108 |
+
|
109 |
+
if isinstance(vocoder.feature_extractor, EncodecFeatures):
|
110 |
+
encodec_parameters = {
|
111 |
+
"feature_extractor.encodec." + key: value
|
112 |
+
for key, value in vocoder.feature_extractor.encodec.state_dict().items()
|
113 |
+
}
|
114 |
+
state_dict.update(encodec_parameters)
|
115 |
+
vocoder.load_state_dict(state_dict)
|
116 |
+
vocoder = vocoder.eval().to(device)
|
117 |
elif vocoder_name == "bigvgan":
|
118 |
try:
|
119 |
from third_party.BigVGAN import bigvgan
|
120 |
except ImportError:
|
121 |
print("You need to follow the README to init submodule and change the BigVGAN source code.")
|
122 |
+
if is_local and local_path is not None:
|
123 |
"""download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
|
|
|
124 |
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
125 |
else:
|
126 |
+
local_path = snapshot_download(repo_id="nvidia/bigvgan_v2_24khz_100band_256x", cache_dir=local_path)
|
127 |
+
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
128 |
|
129 |
vocoder.remove_weight_norm()
|
130 |
vocoder = vocoder.eval().to(device)
|