Spaces:
Running
on
Zero
Running
on
Zero
mrfakename
commited on
Commit
•
04e5c28
1
Parent(s):
3ce666d
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- Dockerfile +5 -2
- src/f5_tts/train/README.md +3 -0
- src/f5_tts/train/datasets/prepare_libritts.py +92 -0
Dockerfile
CHANGED
@@ -10,14 +10,17 @@ RUN set -x \
|
|
10 |
&& apt-get update \
|
11 |
&& apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
|
12 |
&& apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
|
|
|
13 |
&& rm -rf /var/lib/apt/lists/* \
|
14 |
&& apt-get clean
|
15 |
-
|
16 |
WORKDIR /workspace
|
17 |
|
18 |
RUN git clone https://github.com/SWivid/F5-TTS.git \
|
19 |
&& cd F5-TTS \
|
20 |
-
&&
|
|
|
|
|
21 |
|
22 |
ENV SHELL=/bin/bash
|
23 |
|
|
|
10 |
&& apt-get update \
|
11 |
&& apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
|
12 |
&& apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
|
13 |
+
&& apt-get install librdmacm1 libibumad3 librdmacm-dev libibverbs1 libibverbs-dev ibverbs-utils ibverbs-providers \
|
14 |
&& rm -rf /var/lib/apt/lists/* \
|
15 |
&& apt-get clean
|
16 |
+
|
17 |
WORKDIR /workspace
|
18 |
|
19 |
RUN git clone https://github.com/SWivid/F5-TTS.git \
|
20 |
&& cd F5-TTS \
|
21 |
+
&& git submodule update --init --recursive \
|
22 |
+
&& sed -i '7iimport sys\nsys.path.append(os.path.dirname(os.path.abspath(__file__)))' src/third_party/BigVGAN/bigvgan.py \
|
23 |
+
&& pip install -e . --no-cache-dir
|
24 |
|
25 |
ENV SHELL=/bin/bash
|
26 |
|
src/f5_tts/train/README.md
CHANGED
@@ -13,6 +13,9 @@ python src/f5_tts/train/datasets/prepare_emilia.py
|
|
13 |
|
14 |
# Prepare the Wenetspeech4TTS dataset
|
15 |
python src/f5_tts/train/datasets/prepare_wenetspeech4tts.py
|
|
|
|
|
|
|
16 |
```
|
17 |
|
18 |
### 2. Create custom dataset with metadata.csv
|
|
|
13 |
|
14 |
# Prepare the Wenetspeech4TTS dataset
|
15 |
python src/f5_tts/train/datasets/prepare_wenetspeech4tts.py
|
16 |
+
|
17 |
+
# Prepare the LibriTTS dataset
|
18 |
+
python src/f5_tts/train/datasets/prepare_libritts.py
|
19 |
```
|
20 |
|
21 |
### 2. Create custom dataset with metadata.csv
|
src/f5_tts/train/datasets/prepare_libritts.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append(os.getcwd())
|
5 |
+
|
6 |
+
import json
|
7 |
+
from concurrent.futures import ProcessPoolExecutor
|
8 |
+
from importlib.resources import files
|
9 |
+
from pathlib import Path
|
10 |
+
from tqdm import tqdm
|
11 |
+
import soundfile as sf
|
12 |
+
from datasets.arrow_writer import ArrowWriter
|
13 |
+
|
14 |
+
|
15 |
+
def deal_with_audio_dir(audio_dir):
|
16 |
+
sub_result, durations = [], []
|
17 |
+
vocab_set = set()
|
18 |
+
audio_lists = list(audio_dir.rglob("*.wav"))
|
19 |
+
|
20 |
+
for line in audio_lists:
|
21 |
+
text_path = line.with_suffix(".normalized.txt")
|
22 |
+
text = open(text_path, "r").read().strip()
|
23 |
+
duration = sf.info(line).duration
|
24 |
+
if duration < 0.4 or duration > 30:
|
25 |
+
continue
|
26 |
+
sub_result.append({"audio_path": str(line), "text": text, "duration": duration})
|
27 |
+
durations.append(duration)
|
28 |
+
vocab_set.update(list(text))
|
29 |
+
return sub_result, durations, vocab_set
|
30 |
+
|
31 |
+
|
32 |
+
def main():
|
33 |
+
result = []
|
34 |
+
duration_list = []
|
35 |
+
text_vocab_set = set()
|
36 |
+
|
37 |
+
# process raw data
|
38 |
+
executor = ProcessPoolExecutor(max_workers=max_workers)
|
39 |
+
futures = []
|
40 |
+
|
41 |
+
for subset in tqdm(SUB_SET):
|
42 |
+
dataset_path = Path(os.path.join(dataset_dir, subset))
|
43 |
+
[
|
44 |
+
futures.append(executor.submit(deal_with_audio_dir, audio_dir))
|
45 |
+
for audio_dir in dataset_path.iterdir()
|
46 |
+
if audio_dir.is_dir()
|
47 |
+
]
|
48 |
+
for future in tqdm(futures, total=len(futures)):
|
49 |
+
sub_result, durations, vocab_set = future.result()
|
50 |
+
result.extend(sub_result)
|
51 |
+
duration_list.extend(durations)
|
52 |
+
text_vocab_set.update(vocab_set)
|
53 |
+
executor.shutdown()
|
54 |
+
|
55 |
+
# save preprocessed dataset to disk
|
56 |
+
if not os.path.exists(f"{save_dir}"):
|
57 |
+
os.makedirs(f"{save_dir}")
|
58 |
+
print(f"\nSaving to {save_dir} ...")
|
59 |
+
|
60 |
+
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
61 |
+
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
62 |
+
writer.write(line)
|
63 |
+
|
64 |
+
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
65 |
+
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
66 |
+
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
67 |
+
|
68 |
+
# vocab map, i.e. tokenizer
|
69 |
+
with open(f"{save_dir}/vocab.txt", "w") as f:
|
70 |
+
for vocab in sorted(text_vocab_set):
|
71 |
+
f.write(vocab + "\n")
|
72 |
+
|
73 |
+
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
74 |
+
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
75 |
+
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
max_workers = 36
|
80 |
+
|
81 |
+
tokenizer = "char" # "pinyin" | "char"
|
82 |
+
|
83 |
+
SUB_SET = ["train-clean-100", "train-clean-360", "train-other-500"]
|
84 |
+
dataset_dir = "<SOME_PATH>/LibriTTS"
|
85 |
+
dataset_name = f"LibriTTS_{'_'.join(SUB_SET)}_{tokenizer}".replace("train-clean-", "").replace("train-other-", "")
|
86 |
+
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
87 |
+
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
88 |
+
main()
|
89 |
+
|
90 |
+
# For LibriTTS_100_360_500_char, sample count: 354218
|
91 |
+
# For LibriTTS_100_360_500_char, vocab size is: 78
|
92 |
+
# For LibriTTS_100_360_500_char, total 554.09 hours
|