E2-F5-TTS / src /f5_tts /socket_server.py
mrfakename's picture
Sync from GitHub repo
aa59806 verified
raw
history blame
5.57 kB
import socket
import struct
import torch
import torchaudio
from threading import Thread
import gc
import traceback
from infer.utils_infer import infer_batch_process, preprocess_ref_audio_text, load_vocoder, load_model
from model.backbones.dit import DiT
class TTSStreamingProcessor:
def __init__(self, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
# Load the model using the provided checkpoint and vocab files
self.model = load_model(
model_cls=DiT,
model_cfg=dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
ckpt_path=ckpt_file,
mel_spec_type="vocos", # or "bigvgan" depending on vocoder
vocab_file=vocab_file,
ode_method="euler",
use_ema=True,
device=self.device,
).to(self.device, dtype=dtype)
# Load the vocoder
self.vocoder = load_vocoder(is_local=False)
# Set sampling rate for streaming
self.sampling_rate = 24000 # Consistency with client
# Set reference audio and text
self.ref_audio = ref_audio
self.ref_text = ref_text
# Warm up the model
self._warm_up()
def _warm_up(self):
"""Warm up the model with a dummy input to ensure it's ready for real-time processing."""
print("Warming up the model...")
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
audio, sr = torchaudio.load(ref_audio)
gen_text = "Warm-up text for the model."
# Pass the vocoder as an argument here
infer_batch_process((audio, sr), ref_text, [gen_text], self.model, self.vocoder, device=self.device)
print("Warm-up completed.")
def generate_stream(self, text, play_steps_in_s=0.5):
"""Generate audio in chunks and yield them in real-time."""
# Preprocess the reference audio and text
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
# Load reference audio
audio, sr = torchaudio.load(ref_audio)
# Run inference for the input text
audio_chunk, final_sample_rate, _ = infer_batch_process(
(audio, sr),
ref_text,
[text],
self.model,
self.vocoder,
device=self.device, # Pass vocoder here
)
# Break the generated audio into chunks and send them
chunk_size = int(final_sample_rate * play_steps_in_s)
for i in range(0, len(audio_chunk), chunk_size):
chunk = audio_chunk[i : i + chunk_size]
# Check if it's the final chunk
if i + chunk_size >= len(audio_chunk):
chunk = audio_chunk[i:]
# Avoid sending empty or repeated chunks
if len(chunk) == 0:
break
# Pack and send the audio chunk
packed_audio = struct.pack(f"{len(chunk)}f", *chunk)
yield packed_audio
# Ensure that no final word is repeated by not resending partial chunks
if len(audio_chunk) % chunk_size != 0:
remaining_chunk = audio_chunk[-(len(audio_chunk) % chunk_size) :]
packed_audio = struct.pack(f"{len(remaining_chunk)}f", *remaining_chunk)
yield packed_audio
def handle_client(client_socket, processor):
try:
while True:
# Receive data from the client
data = client_socket.recv(1024).decode("utf-8")
if not data:
break
try:
# The client sends the text input
text = data.strip()
# Generate and stream audio chunks
for audio_chunk in processor.generate_stream(text):
client_socket.sendall(audio_chunk)
# Send end-of-audio signal
client_socket.sendall(b"END_OF_AUDIO")
except Exception as inner_e:
print(f"Error during processing: {inner_e}")
traceback.print_exc() # Print the full traceback to diagnose the issue
break
except Exception as e:
print(f"Error handling client: {e}")
traceback.print_exc()
finally:
client_socket.close()
def start_server(host, port, processor):
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((host, port))
server.listen(5)
print(f"Server listening on {host}:{port}")
while True:
client_socket, addr = server.accept()
print(f"Accepted connection from {addr}")
client_handler = Thread(target=handle_client, args=(client_socket, processor))
client_handler.start()
if __name__ == "__main__":
try:
# Load the model and vocoder using the provided files
ckpt_file = "" # pointing your checkpoint "ckpts/model/model_1096.pt"
vocab_file = "" # Add vocab file path if needed
ref_audio = "" # add ref audio"./tests/ref_audio/reference.wav"
ref_text = ""
# Initialize the processor with the model and vocoder
processor = TTSStreamingProcessor(
ckpt_file=ckpt_file,
vocab_file=vocab_file,
ref_audio=ref_audio,
ref_text=ref_text,
dtype=torch.float32,
)
# Start the server
start_server("0.0.0.0", 9998, processor)
except KeyboardInterrupt:
gc.collect()