test1 / app.py
mqcm's picture
Update app.py
f435a3d unverified
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template, hide_st_style, footer
from langchain_community.llms import HuggingFaceHub
from matplotlib import style
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# embeddings = OpenAIEmbeddings()
print("HuggingFaceInstructEmbeddings")
model_kwargs = {'device': 'cpu', 'weights_only': True}
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs)
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
print("FAISS.from_texts")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
print("returning vectorstore")
return vectorstore
def get_conversation_chain(vectorstore):
# llm = ChatOpenAI()
llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
if st.session_state.conversation is None:
st.error("Please upload PDF data before starting the chat.")
return
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Talk with PDF",
page_icon="icon.png")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with AI with Custom Data πŸš€")
user_question = st.text_input("Ask a question about your Data:")
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your Data here in PDF format and click on 'Process'", accept_multiple_files=True, type=['pdf'])
if st.button("Process"):
if pdf_docs is None:
st.error("Please upload at least one PDF file.")
else:
with st.spinner("Processing"):
print("get_pdf_text")
raw_text = get_pdf_text(pdf_docs)
print("get_text_chunks")
text_chunks = get_text_chunks(raw_text)
print("get_vectorstore")
vectorstore = get_vectorstore(text_chunks)
print("get_conversation_chain")
st.session_state.conversation = get_conversation_chain(
vectorstore)
print("success")
st.success("Your Data has been processed successfully")
if user_question:
handle_userinput(user_question)
st.markdown(hide_st_style, unsafe_allow_html=True)
st.markdown(footer, unsafe_allow_html=True)
if __name__ == '__main__':
main()