Spaces:
Runtime error
Runtime error
<p align="center"><img width="160" src="doc/lip_white.png" alt="logo"></p> | |
<h1 align="center">Visual Speech Recognition for Multiple Languages</h1> | |
<div align="center"> | |
[📘Introduction](#Introduction) | | |
[🛠️Preparation](#Preparation) | | |
[📊Benchmark](#Benchmark-evaluation) | | |
[🔮Inference](#Speech-prediction) | | |
[🐯Model zoo](#Model-Zoo) | | |
[📝License](#License) | |
</div> | |
## Authors | |
[Pingchuan Ma](https://mpc001.github.io/), [Alexandros Haliassos](https://dblp.org/pid/257/3052.html), [Adriana Fernandez-Lopez](https://scholar.google.com/citations?user=DiVeQHkAAAAJ), [Honglie Chen](https://scholar.google.com/citations?user=HPwdvwEAAAAJ), [Stavros Petridis](https://ibug.doc.ic.ac.uk/people/spetridis), [Maja Pantic](https://ibug.doc.ic.ac.uk/people/mpantic). | |
## Update | |
`2023-03-27`: We have released our AutoAVSR models for LRS3, see [here](#autoavsr-models). | |
## Introduction | |
This is the repository of [Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels](https://arxiv.org/abs/2303.14307) and [Visual Speech Recognition for Multiple Languages](https://arxiv.org/abs/2202.13084), which is the successor of [End-to-End Audio-Visual Speech Recognition with Conformers](https://arxiv.org/abs/2102.06657). By using this repository, you can achieve the performance of 19.1%, 1.0% and 0.9% WER for automatic, visual, and audio-visual speech recognition (ASR, VSR, and AV-ASR) on LRS3. | |
## Tutorial | |
We provide a tutorial [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jfb6e4xxhXHbmQf-nncdLno1u0b4j614) to show how to use our Auto-AVSR models to perform speech recognition (ASR, VSR, and AV-ASR), crop mouth ROIs or extract visual speech features. | |
## Demo | |
English -> Mandarin -> Spanish | French -> Portuguese -> Italian | | |
:-------------------------------:|:------------------------------------: | |
<img src='doc/vsr_1.gif' title='vsr1' style='max-width:320px'></img> | <img src='doc/vsr_2.gif' title='vsr2' style='max-width:320px'></img> | | |
<div align="center"> | |
[Youtube](https://youtu.be/FIau-6JA9Po) | | |
[Bilibili](https://www.bilibili.com/video/BV1Wu411D7oP) | |
</div> | |
## Preparation | |
1. Clone the repository and enter it locally: | |
```Shell | |
git clone https://github.com/mpc001/Visual_Speech_Recognition_for_Multiple_Languages | |
cd Visual_Speech_Recognition_for_Multiple_Languages | |
``` | |
2. Setup the environment. | |
```Shell | |
conda create -y -n autoavsr python=3.8 | |
conda activate autoavsr | |
``` | |
3. Install pytorch, torchvision, and torchaudio by following instructions [here](https://pytorch.org/get-started/), and install all packages: | |
```Shell | |
pip install -r requirements.txt | |
conda install -c conda-forge ffmpeg | |
``` | |
4. Download and extract a pre-trained model and/or language model from [model zoo](#Model-Zoo) to: | |
- `./benchmarks/${dataset}/models` | |
- `./benchmarks/${dataset}/language_models` | |
5. [For VSR and AV-ASR] Install [RetinaFace](./tools) or [MediaPipe](https://pypi.org/project/mediapipe/) tracker. | |
### Benchmark evaluation | |
```Shell | |
python eval.py config_filename=[config_filename] \ | |
labels_filename=[labels_filename] \ | |
data_dir=[data_dir] \ | |
landmarks_dir=[landmarks_dir] | |
``` | |
- `[config_filename]` is the model configuration path, located in `./configs`. | |
- `[labels_filename]` is the labels path, located in `${lipreading_root}/benchmarks/${dataset}/labels`. | |
- `[data_dir]` and `[landmarks_dir]` are the directories for original dataset and corresponding landmarks. | |
- `gpu_idx=-1` can be added to switch from `cuda:0` to `cpu`. | |
### Speech prediction | |
```Shell | |
python infer.py config_filename=[config_filename] data_filename=[data_filename] | |
``` | |
- `data_filename` is the path to the audio/video file. | |
- `detector=mediapipe` can be added to switch from RetinaFace to MediaPipe tracker. | |
### Mouth ROIs cropping | |
```Shell | |
python crop_mouth.py data_filename=[data_filename] dst_filename=[dst_filename] | |
``` | |
- `dst_filename` is the path where the cropped mouth will be saved. | |
## Model zoo | |
### Overview | |
We support a number of datasets for speech recognition: | |
- [x] [Lip Reading Sentences 2 (LRS2)](https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html) | |
- [x] [Lip Reading Sentences 3 (LRS3)](https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs3.html) | |
- [x] [Chinese Mandarin Lip Reading (CMLR)](https://www.vipazoo.cn/CMLR.html) | |
- [x] [CMU Multimodal Opinion Sentiment, Emotions and Attributes (CMU-MOSEAS)](http://immortal.multicomp.cs.cmu.edu/cache/multilingual) | |
- [x] [GRID](http://spandh.dcs.shef.ac.uk/gridcorpus) | |
- [x] [Lombard GRID](http://spandh.dcs.shef.ac.uk/avlombard) | |
- [x] [TCD-TIMIT](https://sigmedia.tcd.ie) | |
### AutoAVSR models | |
<details open> | |
<summary>Lip Reading Sentences 3 (LRS3)</summary> | |
<p> </p> | |
| Components | WER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| - | 19.1 |[GoogleDrive](http://bit.ly/40EAtyX) or [BaiduDrive](https://bit.ly/3ZjbrV5)(key: dqsy) | 891 | | |
| **Audio-only** | | |
| - | 1.0 |[GoogleDrive](http://bit.ly/3ZSdh0l) or [BaiduDrive](http://bit.ly/3Z1TlGU)(key: dvf2) | 860 | | |
| **Audio-visual** | | |
| - | 0.9 |[GoogleDrive](http://bit.ly/3yRSXAn) or [BaiduDrive](http://bit.ly/3LAxcMY)(key: sai5) | 1540 | | |
| **Language models** | | |
| - | - |[GoogleDrive](http://bit.ly/3FE4XsV) or [BaiduDrive](http://bit.ly/3yRI5SY)(key: t9ep) | 191 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/33rEsax) or [BaiduDrive](https://bit.ly/3rwQSph)(key: mi3c) | 18577 | | |
</details> | |
### VSR for multiple languages models | |
<details open> | |
<summary>Lip Reading Sentences 2 (LRS2)</summary> | |
<p> </p> | |
| Components | WER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| - | 26.1 |[GoogleDrive](https://bit.ly/3I25zrH) or [BaiduDrive](https://bit.ly/3BAHBkH)(key: 48l1) | 186 | | |
| **Language models** | | |
| - | - |[GoogleDrive](https://bit.ly/3qzWKit) or [BaiduDrive](https://bit.ly/3KgAL7T)(key: 59u2) | 180 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/3jSMMoz) or [BaiduDrive](https://bit.ly/3BuIwBB)(key: 53rc) | 9358 | | |
</details> | |
<details open> | |
<summary>Lip Reading Sentences 3 (LRS3)</summary> | |
<p> </p> | |
| Components | WER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| - | 32.3 |[GoogleDrive](https://bit.ly/3Bp4gjV) or [BaiduDrive](https://bit.ly/3rIzLCn)(key: 1b1s) | 186 | | |
| **Language models** | | |
| - | - |[GoogleDrive](https://bit.ly/3qzWKit) or [BaiduDrive](https://bit.ly/3KgAL7T)(key: 59u2) | 180 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/33rEsax) or [BaiduDrive](https://bit.ly/3rwQSph)(key: mi3c) | 18577 | | |
</details> | |
<details open> | |
<summary>Chinese Mandarin Lip Reading (CMLR)</summary> | |
<p> </p> | |
| Components | CER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| - | 8.0 |[GoogleDrive](https://bit.ly/3fR8RkU) or [BaiduDrive](https://bit.ly/3IyACLB)(key: 7eq1) | 195 | | |
| **Language models** | | |
| - | - |[GoogleDrive](https://bit.ly/3fPxXAJ) or [BaiduDrive](https://bit.ly/3rEcErr)(key: k8iv) | 187 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/3bvetPL) or [BaiduDrive](https://bit.ly/3o2u53d)(key: 1ret) | 3721 | | |
</details> | |
<details open> | |
<summary>CMU Multimodal Opinion Sentiment, Emotions and Attributes (CMU-MOSEAS)</summary> | |
<p> </p> | |
| Components | WER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| Spanish | 44.5 |[GoogleDrive](https://bit.ly/34MjWBW) or [BaiduDrive](https://bit.ly/33rMq3a)(key: m35h) | 186 | | |
| Portuguese | 51.4 |[GoogleDrive](https://bit.ly/3HjXCgo) or [BaiduDrive](https://bit.ly/3IqbbMg)(key: wk2h) | 186 | | |
| French | 58.6 |[GoogleDrive](https://bit.ly/3Ik6owb) or [BaiduDrive](https://bit.ly/35msiQG)(key: t1hf) | 186 | | |
| **Language models** | | |
| Spanish | - |[GoogleDrive](https://bit.ly/3rppyJN) or [BaiduDrive](https://bit.ly/3nA3wCN)(key: 0mii) | 180 | | |
| Portuguese | - |[GoogleDrive](https://bit.ly/3gPvneF) or [BaiduDrive](https://bit.ly/33vL8Es)(key: l6ag) | 179 | | |
| French | - |[GoogleDrive](https://bit.ly/3LDChSn) or [BaiduDrive](https://bit.ly/3sNnNql)(key: 6tan) | 179 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/34Cf6ak) or [BaiduDrive](https://bit.ly/3BiFG4c)(key: vsic) | 3040 | | |
</details> | |
<details open> | |
<summary>GRID</summary> | |
<p> </p> | |
| Components | WER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| Overlapped | 1.2 |[GoogleDrive](https://bit.ly/3Aa6PWn) or [BaiduDrive](https://bit.ly/3IdamGh)(key: d8d2) | 186 | | |
| Unseen | 4.8 |[GoogleDrive](https://bit.ly/3patMVh) or [BaiduDrive](https://bit.ly/3t6459A)(key: ttsh) | 186 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/2Yzu1PF) or [BaiduDrive](https://bit.ly/30fucjG)(key: 16l9) | 1141 | | |
You can include `data_ext=.mpg` in your command line to match the video file extension in the GRID dataset. | |
</details> | |
<details open> | |
<summary>Lombard GRID</summary> | |
<p> </p> | |
| Components | WER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| Unseen (Front Plain) | 4.9 |[GoogleDrive](https://bit.ly/3H5zkGQ) or [BaiduDrive](https://bit.ly/3LE1xI6)(key: 38ds) | 186 | | |
| Unseen (Side Plain) | 8.0 |[GoogleDrive](https://bit.ly/3BsGOSO) or [BaiduDrive](https://bit.ly/3sRZYNY)(key: k6m0) | 186 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/354YOH0) or [BaiduDrive](https://bit.ly/3oWUCA4)(key: cusv) | 309 | | |
You can include `data_ext=.mov` in your command line to match the video file extension in the Lombard GRID dataset. | |
</details> | |
<details open> | |
<summary>TCD-TIMIT</summary> | |
<p> </p> | |
| Components | WER | url | size (MB) | | |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:| | |
| **Visual-only** | | |
| Overlapped | 16.9 |[GoogleDrive](https://bit.ly/3Fv7u61) or [BaiduDrive](https://bit.ly/33rPlZN)(key: jh65) | 186 | | |
| Unseen | 21.8 |[GoogleDrive](https://bit.ly/3530d0N) or [BaiduDrive](https://bit.ly/3nxZjzC)(key: n2gr) | 186 | | |
| **Language models** | | |
| - | - |[GoogleDrive](https://bit.ly/3qzWKit) or [BaiduDrive](https://bit.ly/3KgAL7T)(key: 59u2) | 180 | | |
| **Landmarks** | | |
| - | - |[GoogleDrive](https://bit.ly/3HYmifr) or [BaiduDrive](https://bit.ly/3JFJ6RH)(key: bnm8) | 930 | | |
</details> | |
## Citation | |
If you use the AutoAVSR models, please consider citing the following paper: | |
```bibtex | |
@inproceedings{ma2023auto, | |
author={Ma, Pingchuan and Haliassos, Alexandros and Fernandez-Lopez, Adriana and Chen, Honglie and Petridis, Stavros and Pantic, Maja}, | |
booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, | |
title={Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels}, | |
year={2023}, | |
} | |
``` | |
If you use the VSR models for multiple languages please consider citing the following paper: | |
```bibtex | |
@article{ma2022visual, | |
title={{Visual Speech Recognition for Multiple Languages in the Wild}}, | |
author={Ma, Pingchuan and Petridis, Stavros and Pantic, Maja}, | |
journal={{Nature Machine Intelligence}}, | |
volume={4}, | |
pages={930--939}, | |
year={2022} | |
url={https://doi.org/10.1038/s42256-022-00550-z}, | |
doi={10.1038/s42256-022-00550-z} | |
} | |
``` | |
## License | |
It is noted that the code can only be used for comparative or benchmarking purposes. Users can only use code supplied under a [License](./LICENSE) for non-commercial purposes. | |
## Contact | |
``` | |
[Pingchuan Ma](pingchuan.ma16[at]imperial.ac.uk) | |
``` | |