mosidi stefan-it commited on
Commit
af5e402
·
0 Parent(s):

Duplicate from dbmdz/detectron2-model-demo

Browse files

Co-authored-by: Stefan <stefan-it@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.npy filter=lfs diff=lfs merge=lfs -text
13
+ *.npz filter=lfs diff=lfs merge=lfs -text
14
+ *.onnx filter=lfs diff=lfs merge=lfs -text
15
+ *.ot filter=lfs diff=lfs merge=lfs -text
16
+ *.parquet filter=lfs diff=lfs merge=lfs -text
17
+ *.pickle filter=lfs diff=lfs merge=lfs -text
18
+ *.pkl filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pt filter=lfs diff=lfs merge=lfs -text
21
+ *.pth filter=lfs diff=lfs merge=lfs -text
22
+ *.rar filter=lfs diff=lfs merge=lfs -text
23
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
24
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
25
+ *.tflite filter=lfs diff=lfs merge=lfs -text
26
+ *.tgz filter=lfs diff=lfs merge=lfs -text
27
+ *.wasm filter=lfs diff=lfs merge=lfs -text
28
+ *.xz filter=lfs diff=lfs merge=lfs -text
29
+ *.zip filter=lfs diff=lfs merge=lfs -text
30
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
31
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Detectron2 Model Demo
3
+ emoji: 👁
4
+ colorFrom: pink
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.1.4
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ duplicated_from: dbmdz/detectron2-model-demo
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ import detectron2
3
+ except:
4
+ import os
5
+ os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
6
+
7
+ import cv2
8
+
9
+ from matplotlib.pyplot import axis
10
+ import gradio as gr
11
+ import requests
12
+ import numpy as np
13
+ from torch import nn
14
+ import requests
15
+
16
+ import torch
17
+
18
+ from detectron2 import model_zoo
19
+ from detectron2.engine import DefaultPredictor
20
+ from detectron2.config import get_cfg
21
+ from detectron2.utils.visualizer import Visualizer
22
+ from detectron2.data import MetadataCatalog
23
+
24
+
25
+ model_path = "https://huggingface.co/dbmdz/detectron2-model/resolve/main/model_final.pth"
26
+
27
+ cfg = get_cfg()
28
+ cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml")
29
+ cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
30
+ cfg.MODEL.WEIGHTS = model_path
31
+
32
+ my_metadata = MetadataCatalog.get("dbmdz_coco_all")
33
+ my_metadata.thing_classes = ["Illumination", "Illustration"]
34
+
35
+ if not torch.cuda.is_available():
36
+ cfg.MODEL.DEVICE = "cpu"
37
+
38
+
39
+ def inference(image_url, image, min_score):
40
+ if image_url:
41
+ r = requests.get(image_url)
42
+ if r:
43
+ im = np.frombuffer(r.content, dtype="uint8")
44
+ im = cv2.imdecode(im, cv2.IMREAD_COLOR)
45
+ else:
46
+ # Model expect BGR!
47
+ im = image[:,:,::-1]
48
+
49
+ cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
50
+ predictor = DefaultPredictor(cfg)
51
+
52
+ outputs = predictor(im)
53
+
54
+ v = Visualizer(im, my_metadata, scale=1.2)
55
+ out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
56
+
57
+ return out.get_image()
58
+
59
+
60
+ title = "DBMDZ Detectron2 Model Demo"
61
+ description = "This demo introduces an interactive playground for our trained Detectron2 model. <br>The model was trained on manually annotated segments from digitized books to detect Illustration or Illumination segments on a given page."
62
+ article = '<p>Detectron model is available from our repository <a href="">here</a> on the Hugging Face Model Hub.</p>'
63
+
64
+ gr.Interface(
65
+ inference,
66
+ [gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"),
67
+ gr.inputs.Image(type="numpy", label="Input Image"),
68
+ gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score"),
69
+ ],
70
+ gr.outputs.Image(type="pil", label="Output"),
71
+ title=title,
72
+ description=description,
73
+ article=article,
74
+ examples=[]).launch()
configs/detectron2/Base-RCNN-FPN.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ META_ARCHITECTURE: "GeneralizedRCNN"
3
+ BACKBONE:
4
+ NAME: "build_resnet_fpn_backbone"
5
+ RESNETS:
6
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
7
+ FPN:
8
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
9
+ ANCHOR_GENERATOR:
10
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
11
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
12
+ RPN:
13
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
14
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
15
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
16
+ # Detectron1 uses 2000 proposals per-batch,
17
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
18
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
19
+ POST_NMS_TOPK_TRAIN: 1000
20
+ POST_NMS_TOPK_TEST: 1000
21
+ ROI_HEADS:
22
+ NAME: "StandardROIHeads"
23
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
24
+ ROI_BOX_HEAD:
25
+ NAME: "FastRCNNConvFCHead"
26
+ NUM_FC: 2
27
+ POOLER_RESOLUTION: 7
28
+ ROI_MASK_HEAD:
29
+ NAME: "MaskRCNNConvUpsampleHead"
30
+ NUM_CONV: 4
31
+ POOLER_RESOLUTION: 14
32
+ DATASETS:
33
+ TRAIN: ("coco_2017_train",)
34
+ TEST: ("coco_2017_val",)
35
+ SOLVER:
36
+ IMS_PER_BATCH: 16
37
+ BASE_LR: 0.02
38
+ STEPS: (60000, 80000)
39
+ MAX_ITER: 90000
40
+ INPUT:
41
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
42
+ VERSION: 2
configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "./Base-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ MASK_ON: False
5
+ RESNETS:
6
+ DEPTH: 50
7
+ SOLVER:
8
+ STEPS: (210000, 250000)
9
+ MAX_ITER: 270000
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ opencv-python-headless
2
+ pyyaml==5.1
3
+ torch
4
+ torchvision