Spaces:
Runtime error
Runtime error
import torch | |
import time | |
import packages_3rdparty.webui_lora_collection.lora as lora_utils_webui | |
import packages_3rdparty.comfyui_lora_collection.lora as lora_utils_comfyui | |
from tqdm import tqdm | |
from backend import memory_management, utils | |
from backend.args import dynamic_args | |
class ForgeLoraCollection: | |
# TODO | |
pass | |
extra_weight_calculators = {} | |
lora_utils_forge = ForgeLoraCollection() | |
lora_collection_priority = [lora_utils_forge, lora_utils_webui, lora_utils_comfyui] | |
def get_function(function_name: str): | |
for lora_collection in lora_collection_priority: | |
if hasattr(lora_collection, function_name): | |
return getattr(lora_collection, function_name) | |
def load_lora(lora, to_load): | |
patch_dict, remaining_dict = get_function('load_lora')(lora, to_load) | |
return patch_dict, remaining_dict | |
def model_lora_keys_clip(model, key_map={}): | |
return get_function('model_lora_keys_clip')(model, key_map) | |
def model_lora_keys_unet(model, key_map={}): | |
return get_function('model_lora_keys_unet')(model, key_map) | |
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype): | |
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L33 | |
dora_scale = memory_management.cast_to_device(dora_scale, weight.device, computation_dtype) | |
lora_diff *= alpha | |
weight_calc = weight + lora_diff.type(weight.dtype) | |
weight_norm = ( | |
weight_calc.transpose(0, 1) | |
.reshape(weight_calc.shape[1], -1) | |
.norm(dim=1, keepdim=True) | |
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1)) | |
.transpose(0, 1) | |
) | |
weight_calc *= (dora_scale / weight_norm).type(weight.dtype) | |
if strength != 1.0: | |
weight_calc -= weight | |
weight += strength * weight_calc | |
else: | |
weight[:] = weight_calc | |
return weight | |
def merge_lora_to_weight(patches, weight, key="online_lora", computation_dtype=torch.float32): | |
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L446 | |
weight_original_dtype = weight.dtype | |
weight = weight.to(dtype=computation_dtype) | |
for p in patches: | |
strength = p[0] | |
v = p[1] | |
strength_model = p[2] | |
offset = p[3] | |
function = p[4] | |
if function is None: | |
function = lambda a: a | |
old_weight = None | |
if offset is not None: | |
old_weight = weight | |
weight = weight.narrow(offset[0], offset[1], offset[2]) | |
if strength_model != 1.0: | |
weight *= strength_model | |
if isinstance(v, list): | |
v = (merge_lora_to_weight(v[1:], v[0].clone(), key),) | |
patch_type = '' | |
if len(v) == 1: | |
patch_type = "diff" | |
elif len(v) == 2: | |
patch_type = v[0] | |
v = v[1] | |
if patch_type == "diff": | |
w1 = v[0] | |
if strength != 0.0: | |
if w1.shape != weight.shape: | |
if w1.ndim == weight.ndim == 4: | |
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)] | |
print(f'Merged with {key} channel changed to {new_shape}') | |
new_diff = strength * memory_management.cast_to_device(w1, weight.device, weight.dtype) | |
new_weight = torch.zeros(size=new_shape).to(weight) | |
new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight | |
new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff | |
new_weight = new_weight.contiguous().clone() | |
weight = new_weight | |
else: | |
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) | |
else: | |
weight += strength * memory_management.cast_to_device(w1, weight.device, weight.dtype) | |
elif patch_type == "lora": | |
mat1 = memory_management.cast_to_device(v[0], weight.device, computation_dtype) | |
mat2 = memory_management.cast_to_device(v[1], weight.device, computation_dtype) | |
dora_scale = v[4] | |
if v[2] is not None: | |
alpha = v[2] / mat2.shape[0] | |
else: | |
alpha = 1.0 | |
if v[3] is not None: | |
mat3 = memory_management.cast_to_device(v[3], weight.device, computation_dtype) | |
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] | |
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) | |
try: | |
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type == "lokr": | |
w1 = v[0] | |
w2 = v[1] | |
w1_a = v[3] | |
w1_b = v[4] | |
w2_a = v[5] | |
w2_b = v[6] | |
t2 = v[7] | |
dora_scale = v[8] | |
dim = None | |
if w1 is None: | |
dim = w1_b.shape[0] | |
w1 = torch.mm(memory_management.cast_to_device(w1_a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1_b, weight.device, computation_dtype)) | |
else: | |
w1 = memory_management.cast_to_device(w1, weight.device, computation_dtype) | |
if w2 is None: | |
dim = w2_b.shape[0] | |
if t2 is None: | |
w2 = torch.mm(memory_management.cast_to_device(w2_a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2_b, weight.device, computation_dtype)) | |
else: | |
w2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
memory_management.cast_to_device(t2, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2_b, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2_a, weight.device, computation_dtype)) | |
else: | |
w2 = memory_management.cast_to_device(w2, weight.device, computation_dtype) | |
if len(w2.shape) == 4: | |
w1 = w1.unsqueeze(2).unsqueeze(2) | |
if v[2] is not None and dim is not None: | |
alpha = v[2] / dim | |
else: | |
alpha = 1.0 | |
try: | |
lora_diff = torch.kron(w1, w2).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type == "loha": | |
w1a = v[0] | |
w1b = v[1] | |
if v[2] is not None: | |
alpha = v[2] / w1b.shape[0] | |
else: | |
alpha = 1.0 | |
w2a = v[3] | |
w2b = v[4] | |
dora_scale = v[7] | |
if v[5] is not None: | |
t1 = v[5] | |
t2 = v[6] | |
m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
memory_management.cast_to_device(t1, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1b, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1a, weight.device, computation_dtype)) | |
m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
memory_management.cast_to_device(t2, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2b, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2a, weight.device, computation_dtype)) | |
else: | |
m1 = torch.mm(memory_management.cast_to_device(w1a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1b, weight.device, computation_dtype)) | |
m2 = torch.mm(memory_management.cast_to_device(w2a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2b, weight.device, computation_dtype)) | |
try: | |
lora_diff = (m1 * m2).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type == "glora": | |
if v[4] is not None: | |
alpha = v[4] / v[0].shape[0] | |
else: | |
alpha = 1.0 | |
dora_scale = v[5] | |
a1 = memory_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, computation_dtype) | |
a2 = memory_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, computation_dtype) | |
b1 = memory_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, computation_dtype) | |
b2 = memory_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, computation_dtype) | |
try: | |
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type in extra_weight_calculators: | |
weight = extra_weight_calculators[patch_type](weight, strength, v) | |
else: | |
print("patch type not recognized {} {}".format(patch_type, key)) | |
if old_weight is not None: | |
weight = old_weight | |
weight = weight.to(dtype=weight_original_dtype) | |
return weight | |
from backend import operations | |
class LoraLoader: | |
def __init__(self, model): | |
self.model = model | |
self.patches = {} | |
self.backup = {} | |
self.online_backup = [] | |
self.dirty = False | |
def clear_patches(self): | |
self.patches.clear() | |
self.dirty = True | |
return | |
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): | |
p = set() | |
model_sd = self.model.state_dict() | |
for k in patches: | |
offset = None | |
function = None | |
if isinstance(k, str): | |
key = k | |
else: | |
offset = k[1] | |
key = k[0] | |
if len(k) > 2: | |
function = k[2] | |
if key in model_sd: | |
p.add(k) | |
current_patches = self.patches.get(key, []) | |
current_patches.append([strength_patch, patches[k], strength_model, offset, function]) | |
self.patches[key] = current_patches | |
self.dirty = True | |
return list(p) | |
def refresh(self, target_device=None, offload_device=torch.device('cpu')): | |
if not self.dirty: | |
return | |
self.dirty = False | |
execution_start_time = time.perf_counter() | |
# Restore | |
for m in set(self.online_backup): | |
del m.forge_online_loras | |
self.online_backup = [] | |
for k, w in self.backup.items(): | |
if not isinstance(w, torch.nn.Parameter): | |
# In very few cases | |
w = torch.nn.Parameter(w, requires_grad=False) | |
utils.set_attr_raw(self.model, k, w) | |
self.backup = {} | |
online_mode = dynamic_args.get('online_lora', False) | |
# Patch | |
for key, current_patches in (tqdm(self.patches.items(), desc=f'Patching LoRAs for {type(self.model).__name__}') if len(self.patches) > 0 else self.patches): | |
try: | |
parent_layer, child_key, weight = utils.get_attr_with_parent(self.model, key) | |
assert isinstance(weight, torch.nn.Parameter) | |
except: | |
raise ValueError(f"Wrong LoRA Key: {key}") | |
if key not in self.backup: | |
self.backup[key] = weight.to(device=offload_device) | |
if online_mode: | |
if not hasattr(parent_layer, 'forge_online_loras'): | |
parent_layer.forge_online_loras = {} | |
parent_layer.forge_online_loras[child_key] = current_patches | |
self.online_backup.append(parent_layer) | |
continue | |
bnb_layer = None | |
if operations.bnb_avaliable: | |
if hasattr(weight, 'bnb_quantized'): | |
bnb_layer = parent_layer | |
if weight.bnb_quantized: | |
weight_original_device = weight.device | |
if target_device is not None: | |
assert target_device.type == 'cuda', 'BNB Must use CUDA!' | |
weight = weight.to(target_device) | |
else: | |
weight = weight.cuda() | |
from backend.operations_bnb import functional_dequantize_4bit | |
weight = functional_dequantize_4bit(weight) | |
if target_device is None: | |
weight = weight.to(device=weight_original_device) | |
else: | |
weight = weight.data | |
if target_device is not None: | |
try: | |
weight = weight.to(device=target_device) | |
except: | |
print('Moving layer weight failed. Retrying by offloading models.') | |
self.model.to(device=offload_device) | |
memory_management.soft_empty_cache() | |
weight = weight.to(device=target_device) | |
gguf_cls, gguf_type, gguf_real_shape = None, None, None | |
if hasattr(weight, 'is_gguf'): | |
from backend.operations_gguf import dequantize_tensor | |
gguf_cls = weight.gguf_cls | |
gguf_type = weight.gguf_type | |
gguf_real_shape = weight.gguf_real_shape | |
weight = dequantize_tensor(weight) | |
try: | |
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32) | |
except: | |
print('Patching LoRA weights failed. Retrying by offloading models.') | |
self.model.to(device=offload_device) | |
memory_management.soft_empty_cache() | |
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32) | |
if bnb_layer is not None: | |
bnb_layer.reload_weight(weight) | |
continue | |
if gguf_cls is not None: | |
from backend.operations_gguf import ParameterGGUF | |
weight = gguf_cls.quantize_pytorch(weight, gguf_real_shape) | |
utils.set_attr_raw(self.model, key, ParameterGGUF.make( | |
data=weight, | |
gguf_type=gguf_type, | |
gguf_cls=gguf_cls, | |
gguf_real_shape=gguf_real_shape | |
)) | |
continue | |
utils.set_attr_raw(self.model, key, torch.nn.Parameter(weight, requires_grad=False)) | |
# Time | |
moving_time = time.perf_counter() - execution_start_time | |
if moving_time > 0.1: | |
print(f'LoRA patching has taken {moving_time:.2f} seconds') | |
return | |