wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
import torch
from einops import rearrange, repeat
class TileWorker:
def __init__(self):
pass
def mask(self, height, width, border_width):
# Create a mask with shape (height, width).
# The centre area is filled with 1, and the border line is filled with values in range (0, 1].
x = torch.arange(height).repeat(width, 1).T
y = torch.arange(width).repeat(height, 1)
mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values
mask = (mask / border_width).clip(0, 1)
return mask
def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype):
# Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num)
batch_size, channel, _, _ = model_input.shape
model_input = model_input.to(device=tile_device, dtype=tile_dtype)
unfold_operator = torch.nn.Unfold(
kernel_size=(tile_size, tile_size),
stride=(tile_stride, tile_stride)
)
model_input = unfold_operator(model_input)
model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1))
return model_input
def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype):
# Call y=forward_fn(x) for each tile
tile_num = model_input.shape[-1]
model_output_stack = []
for tile_id in range(0, tile_num, tile_batch_size):
# process input
tile_id_ = min(tile_id + tile_batch_size, tile_num)
x = model_input[:, :, :, :, tile_id: tile_id_]
x = x.to(device=inference_device, dtype=inference_dtype)
x = rearrange(x, "b c h w n -> (n b) c h w")
# process output
y = forward_fn(x)
y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id)
y = y.to(device=tile_device, dtype=tile_dtype)
model_output_stack.append(y)
model_output = torch.concat(model_output_stack, dim=-1)
return model_output
def io_scale(self, model_output, tile_size):
# Determine the size modification happend in forward_fn
# We only consider the same scale on height and width.
io_scale = model_output.shape[2] / tile_size
return io_scale
def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype):
# The reversed function of tile
mask = self.mask(tile_size, tile_size, border_width)
mask = mask.to(device=tile_device, dtype=tile_dtype)
mask = rearrange(mask, "h w -> 1 1 h w 1")
model_output = model_output * mask
fold_operator = torch.nn.Fold(
output_size=(height, width),
kernel_size=(tile_size, tile_size),
stride=(tile_stride, tile_stride)
)
mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1])
model_output = rearrange(model_output, "b c h w n -> b (c h w) n")
model_output = fold_operator(model_output) / fold_operator(mask)
return model_output
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None):
# Prepare
inference_device, inference_dtype = model_input.device, model_input.dtype
height, width = model_input.shape[2], model_input.shape[3]
border_width = int(tile_stride*0.5) if border_width is None else border_width
# tile
model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype)
# inference
model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype)
# resize
io_scale = self.io_scale(model_output, tile_size)
height, width = int(height*io_scale), int(width*io_scale)
tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale)
border_width = int(border_width*io_scale)
# untile
model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype)
# Done!
model_output = model_output.to(device=inference_device, dtype=inference_dtype)
return model_output