wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
73.1 kB
import torch
from einops import rearrange
from .svd_unet import TemporalTimesteps
from .tiler import TileWorker
class PatchEmbed(torch.nn.Module):
def __init__(self, patch_size=2, in_channels=16, embed_dim=1536, pos_embed_max_size=192):
super().__init__()
self.pos_embed_max_size = pos_embed_max_size
self.patch_size = patch_size
self.proj = torch.nn.Conv2d(in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size)
self.pos_embed = torch.nn.Parameter(torch.zeros(1, self.pos_embed_max_size, self.pos_embed_max_size, 1536))
def cropped_pos_embed(self, height, width):
height = height // self.patch_size
width = width // self.patch_size
top = (self.pos_embed_max_size - height) // 2
left = (self.pos_embed_max_size - width) // 2
spatial_pos_embed = self.pos_embed[:, top : top + height, left : left + width, :].flatten(1, 2)
return spatial_pos_embed
def forward(self, latent):
height, width = latent.shape[-2:]
latent = self.proj(latent)
latent = latent.flatten(2).transpose(1, 2)
pos_embed = self.cropped_pos_embed(height, width)
return latent + pos_embed
class TimestepEmbeddings(torch.nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.time_proj = TemporalTimesteps(num_channels=dim_in, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = torch.nn.Sequential(
torch.nn.Linear(dim_in, dim_out), torch.nn.SiLU(), torch.nn.Linear(dim_out, dim_out)
)
def forward(self, timestep, dtype):
time_emb = self.time_proj(timestep).to(dtype)
time_emb = self.timestep_embedder(time_emb)
return time_emb
class AdaLayerNorm(torch.nn.Module):
def __init__(self, dim, single=False):
super().__init__()
self.single = single
self.linear = torch.nn.Linear(dim, dim * (2 if single else 6))
self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(torch.nn.functional.silu(emb))
if self.single:
scale, shift = emb.unsqueeze(1).chunk(2, dim=2)
x = self.norm(x) * (1 + scale) + shift
return x
else:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.unsqueeze(1).chunk(6, dim=2)
x = self.norm(x) * (1 + scale_msa) + shift_msa
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class JointAttention(torch.nn.Module):
def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.only_out_a = only_out_a
self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)
self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3)
self.a_to_out = torch.nn.Linear(dim_a, dim_a)
if not only_out_a:
self.b_to_out = torch.nn.Linear(dim_b, dim_b)
def forward(self, hidden_states_a, hidden_states_b):
batch_size = hidden_states_a.shape[0]
qkv = torch.concat([self.a_to_qkv(hidden_states_a), self.b_to_qkv(hidden_states_b)], dim=1)
qkv = qkv.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q, k, v = qkv.chunk(3, dim=1)
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = hidden_states.to(q.dtype)
hidden_states_a, hidden_states_b = hidden_states[:, :hidden_states_a.shape[1]], hidden_states[:, hidden_states_a.shape[1]:]
hidden_states_a = self.a_to_out(hidden_states_a)
if self.only_out_a:
return hidden_states_a
else:
hidden_states_b = self.b_to_out(hidden_states_b)
return hidden_states_a, hidden_states_b
class JointTransformerBlock(torch.nn.Module):
def __init__(self, dim, num_attention_heads):
super().__init__()
self.norm1_a = AdaLayerNorm(dim)
self.norm1_b = AdaLayerNorm(dim)
self.attn = JointAttention(dim, dim, num_attention_heads, dim // num_attention_heads)
self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_a = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_b = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
def forward(self, hidden_states_a, hidden_states_b, temb):
norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb)
norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb)
# Attention
attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b)
# Part A
hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a
norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a
hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a)
# Part B
hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b
norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b
hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b)
return hidden_states_a, hidden_states_b
class JointTransformerFinalBlock(torch.nn.Module):
def __init__(self, dim, num_attention_heads):
super().__init__()
self.norm1_a = AdaLayerNorm(dim)
self.norm1_b = AdaLayerNorm(dim, single=True)
self.attn = JointAttention(dim, dim, num_attention_heads, dim // num_attention_heads, only_out_a=True)
self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_a = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
def forward(self, hidden_states_a, hidden_states_b, temb):
norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb)
norm_hidden_states_b = self.norm1_b(hidden_states_b, emb=temb)
# Attention
attn_output_a = self.attn(norm_hidden_states_a, norm_hidden_states_b)
# Part A
hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a
norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a
hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a)
return hidden_states_a, hidden_states_b
class SD3DiT(torch.nn.Module):
def __init__(self):
super().__init__()
self.pos_embedder = PatchEmbed(patch_size=2, in_channels=16, embed_dim=1536, pos_embed_max_size=192)
self.time_embedder = TimestepEmbeddings(256, 1536)
self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(2048, 1536), torch.nn.SiLU(), torch.nn.Linear(1536, 1536))
self.context_embedder = torch.nn.Linear(4096, 1536)
self.blocks = torch.nn.ModuleList([JointTransformerBlock(1536, 24) for _ in range(23)] + [JointTransformerFinalBlock(1536, 24)])
self.norm_out = AdaLayerNorm(1536, single=True)
self.proj_out = torch.nn.Linear(1536, 64)
def tiled_forward(self, hidden_states, timestep, prompt_emb, pooled_prompt_emb, tile_size=128, tile_stride=64):
# Due to the global positional embedding, we cannot implement layer-wise tiled forward.
hidden_states = TileWorker().tiled_forward(
lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb),
hidden_states,
tile_size,
tile_stride,
tile_device=hidden_states.device,
tile_dtype=hidden_states.dtype
)
return hidden_states
def forward(self, hidden_states, timestep, prompt_emb, pooled_prompt_emb, tiled=False, tile_size=128, tile_stride=64, use_gradient_checkpointing=False):
if tiled:
return self.tiled_forward(hidden_states, timestep, prompt_emb, pooled_prompt_emb, tile_size, tile_stride)
conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb)
prompt_emb = self.context_embedder(prompt_emb)
height, width = hidden_states.shape[-2:]
hidden_states = self.pos_embedder(hidden_states)
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for block in self.blocks:
if self.training and use_gradient_checkpointing:
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, prompt_emb, conditioning,
use_reentrant=False,
)
else:
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning)
hidden_states = self.norm_out(hidden_states, conditioning)
hidden_states = self.proj_out(hidden_states)
hidden_states = rearrange(hidden_states, "B (H W) (P Q C) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2)
return hidden_states
@staticmethod
def state_dict_converter():
return SD3DiTStateDictConverter()
class SD3DiTStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
rename_dict = {
"context_embedder": "context_embedder",
"pos_embed.pos_embed": "pos_embedder.pos_embed",
"pos_embed.proj": "pos_embedder.proj",
"time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0",
"time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2",
"time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0",
"time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2",
"norm_out.linear": "norm_out.linear",
"proj_out": "proj_out",
"norm1.linear": "norm1_a.linear",
"norm1_context.linear": "norm1_b.linear",
"attn.to_q": "attn.a_to_q",
"attn.to_k": "attn.a_to_k",
"attn.to_v": "attn.a_to_v",
"attn.to_out.0": "attn.a_to_out",
"attn.add_q_proj": "attn.b_to_q",
"attn.add_k_proj": "attn.b_to_k",
"attn.add_v_proj": "attn.b_to_v",
"attn.to_add_out": "attn.b_to_out",
"ff.net.0.proj": "ff_a.0",
"ff.net.2": "ff_a.2",
"ff_context.net.0.proj": "ff_b.0",
"ff_context.net.2": "ff_b.2",
}
state_dict_ = {}
for name, param in state_dict.items():
if name in rename_dict:
if name == "pos_embed.pos_embed":
param = param.reshape((1, 192, 192, 1536))
state_dict_[rename_dict[name]] = param
elif name.endswith(".weight") or name.endswith(".bias"):
suffix = ".weight" if name.endswith(".weight") else ".bias"
prefix = name[:-len(suffix)]
if prefix in rename_dict:
state_dict_[rename_dict[prefix] + suffix] = param
elif prefix.startswith("transformer_blocks."):
names = prefix.split(".")
names[0] = "blocks"
middle = ".".join(names[2:])
if middle in rename_dict:
name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]])
state_dict_[name_] = param
return state_dict_
def from_civitai(self, state_dict):
rename_dict = {
"model.diffusion_model.context_embedder.bias": "context_embedder.bias",
"model.diffusion_model.context_embedder.weight": "context_embedder.weight",
"model.diffusion_model.final_layer.linear.bias": "proj_out.bias",
"model.diffusion_model.final_layer.linear.weight": "proj_out.weight",
"model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias": "blocks.0.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.weight": "blocks.0.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.0.context_block.attn.proj.bias": "blocks.0.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.0.context_block.attn.proj.weight": "blocks.0.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.0.context_block.attn.qkv.bias": ['blocks.0.attn.b_to_q.bias', 'blocks.0.attn.b_to_k.bias', 'blocks.0.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.0.context_block.attn.qkv.weight": ['blocks.0.attn.b_to_q.weight', 'blocks.0.attn.b_to_k.weight', 'blocks.0.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.0.context_block.mlp.fc1.bias": "blocks.0.ff_b.0.bias",
"model.diffusion_model.joint_blocks.0.context_block.mlp.fc1.weight": "blocks.0.ff_b.0.weight",
"model.diffusion_model.joint_blocks.0.context_block.mlp.fc2.bias": "blocks.0.ff_b.2.bias",
"model.diffusion_model.joint_blocks.0.context_block.mlp.fc2.weight": "blocks.0.ff_b.2.weight",
"model.diffusion_model.joint_blocks.0.x_block.adaLN_modulation.1.bias": "blocks.0.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.0.x_block.adaLN_modulation.1.weight": "blocks.0.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.0.x_block.attn.proj.bias": "blocks.0.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.0.x_block.attn.proj.weight": "blocks.0.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.0.x_block.attn.qkv.bias": ['blocks.0.attn.a_to_q.bias', 'blocks.0.attn.a_to_k.bias', 'blocks.0.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.0.x_block.attn.qkv.weight": ['blocks.0.attn.a_to_q.weight', 'blocks.0.attn.a_to_k.weight', 'blocks.0.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.0.x_block.mlp.fc1.bias": "blocks.0.ff_a.0.bias",
"model.diffusion_model.joint_blocks.0.x_block.mlp.fc1.weight": "blocks.0.ff_a.0.weight",
"model.diffusion_model.joint_blocks.0.x_block.mlp.fc2.bias": "blocks.0.ff_a.2.bias",
"model.diffusion_model.joint_blocks.0.x_block.mlp.fc2.weight": "blocks.0.ff_a.2.weight",
"model.diffusion_model.joint_blocks.1.context_block.adaLN_modulation.1.bias": "blocks.1.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.1.context_block.adaLN_modulation.1.weight": "blocks.1.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.1.context_block.attn.proj.bias": "blocks.1.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.1.context_block.attn.proj.weight": "blocks.1.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.1.context_block.attn.qkv.bias": ['blocks.1.attn.b_to_q.bias', 'blocks.1.attn.b_to_k.bias', 'blocks.1.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.1.context_block.attn.qkv.weight": ['blocks.1.attn.b_to_q.weight', 'blocks.1.attn.b_to_k.weight', 'blocks.1.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.1.context_block.mlp.fc1.bias": "blocks.1.ff_b.0.bias",
"model.diffusion_model.joint_blocks.1.context_block.mlp.fc1.weight": "blocks.1.ff_b.0.weight",
"model.diffusion_model.joint_blocks.1.context_block.mlp.fc2.bias": "blocks.1.ff_b.2.bias",
"model.diffusion_model.joint_blocks.1.context_block.mlp.fc2.weight": "blocks.1.ff_b.2.weight",
"model.diffusion_model.joint_blocks.1.x_block.adaLN_modulation.1.bias": "blocks.1.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.1.x_block.adaLN_modulation.1.weight": "blocks.1.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.1.x_block.attn.proj.bias": "blocks.1.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.1.x_block.attn.proj.weight": "blocks.1.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.1.x_block.attn.qkv.bias": ['blocks.1.attn.a_to_q.bias', 'blocks.1.attn.a_to_k.bias', 'blocks.1.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.1.x_block.attn.qkv.weight": ['blocks.1.attn.a_to_q.weight', 'blocks.1.attn.a_to_k.weight', 'blocks.1.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.1.x_block.mlp.fc1.bias": "blocks.1.ff_a.0.bias",
"model.diffusion_model.joint_blocks.1.x_block.mlp.fc1.weight": "blocks.1.ff_a.0.weight",
"model.diffusion_model.joint_blocks.1.x_block.mlp.fc2.bias": "blocks.1.ff_a.2.bias",
"model.diffusion_model.joint_blocks.1.x_block.mlp.fc2.weight": "blocks.1.ff_a.2.weight",
"model.diffusion_model.joint_blocks.10.context_block.adaLN_modulation.1.bias": "blocks.10.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.10.context_block.adaLN_modulation.1.weight": "blocks.10.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.10.context_block.attn.proj.bias": "blocks.10.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.10.context_block.attn.proj.weight": "blocks.10.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.10.context_block.attn.qkv.bias": ['blocks.10.attn.b_to_q.bias', 'blocks.10.attn.b_to_k.bias', 'blocks.10.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.10.context_block.attn.qkv.weight": ['blocks.10.attn.b_to_q.weight', 'blocks.10.attn.b_to_k.weight', 'blocks.10.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.10.context_block.mlp.fc1.bias": "blocks.10.ff_b.0.bias",
"model.diffusion_model.joint_blocks.10.context_block.mlp.fc1.weight": "blocks.10.ff_b.0.weight",
"model.diffusion_model.joint_blocks.10.context_block.mlp.fc2.bias": "blocks.10.ff_b.2.bias",
"model.diffusion_model.joint_blocks.10.context_block.mlp.fc2.weight": "blocks.10.ff_b.2.weight",
"model.diffusion_model.joint_blocks.10.x_block.adaLN_modulation.1.bias": "blocks.10.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.10.x_block.adaLN_modulation.1.weight": "blocks.10.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.10.x_block.attn.proj.bias": "blocks.10.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.10.x_block.attn.proj.weight": "blocks.10.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.10.x_block.attn.qkv.bias": ['blocks.10.attn.a_to_q.bias', 'blocks.10.attn.a_to_k.bias', 'blocks.10.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.10.x_block.attn.qkv.weight": ['blocks.10.attn.a_to_q.weight', 'blocks.10.attn.a_to_k.weight', 'blocks.10.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.10.x_block.mlp.fc1.bias": "blocks.10.ff_a.0.bias",
"model.diffusion_model.joint_blocks.10.x_block.mlp.fc1.weight": "blocks.10.ff_a.0.weight",
"model.diffusion_model.joint_blocks.10.x_block.mlp.fc2.bias": "blocks.10.ff_a.2.bias",
"model.diffusion_model.joint_blocks.10.x_block.mlp.fc2.weight": "blocks.10.ff_a.2.weight",
"model.diffusion_model.joint_blocks.11.context_block.adaLN_modulation.1.bias": "blocks.11.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.11.context_block.adaLN_modulation.1.weight": "blocks.11.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.11.context_block.attn.proj.bias": "blocks.11.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.11.context_block.attn.proj.weight": "blocks.11.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.11.context_block.attn.qkv.bias": ['blocks.11.attn.b_to_q.bias', 'blocks.11.attn.b_to_k.bias', 'blocks.11.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.11.context_block.attn.qkv.weight": ['blocks.11.attn.b_to_q.weight', 'blocks.11.attn.b_to_k.weight', 'blocks.11.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.11.context_block.mlp.fc1.bias": "blocks.11.ff_b.0.bias",
"model.diffusion_model.joint_blocks.11.context_block.mlp.fc1.weight": "blocks.11.ff_b.0.weight",
"model.diffusion_model.joint_blocks.11.context_block.mlp.fc2.bias": "blocks.11.ff_b.2.bias",
"model.diffusion_model.joint_blocks.11.context_block.mlp.fc2.weight": "blocks.11.ff_b.2.weight",
"model.diffusion_model.joint_blocks.11.x_block.adaLN_modulation.1.bias": "blocks.11.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.11.x_block.adaLN_modulation.1.weight": "blocks.11.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.11.x_block.attn.proj.bias": "blocks.11.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.11.x_block.attn.proj.weight": "blocks.11.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.11.x_block.attn.qkv.bias": ['blocks.11.attn.a_to_q.bias', 'blocks.11.attn.a_to_k.bias', 'blocks.11.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.11.x_block.attn.qkv.weight": ['blocks.11.attn.a_to_q.weight', 'blocks.11.attn.a_to_k.weight', 'blocks.11.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.11.x_block.mlp.fc1.bias": "blocks.11.ff_a.0.bias",
"model.diffusion_model.joint_blocks.11.x_block.mlp.fc1.weight": "blocks.11.ff_a.0.weight",
"model.diffusion_model.joint_blocks.11.x_block.mlp.fc2.bias": "blocks.11.ff_a.2.bias",
"model.diffusion_model.joint_blocks.11.x_block.mlp.fc2.weight": "blocks.11.ff_a.2.weight",
"model.diffusion_model.joint_blocks.12.context_block.adaLN_modulation.1.bias": "blocks.12.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.12.context_block.adaLN_modulation.1.weight": "blocks.12.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.12.context_block.attn.proj.bias": "blocks.12.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.12.context_block.attn.proj.weight": "blocks.12.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.12.context_block.attn.qkv.bias": ['blocks.12.attn.b_to_q.bias', 'blocks.12.attn.b_to_k.bias', 'blocks.12.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.12.context_block.attn.qkv.weight": ['blocks.12.attn.b_to_q.weight', 'blocks.12.attn.b_to_k.weight', 'blocks.12.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.12.context_block.mlp.fc1.bias": "blocks.12.ff_b.0.bias",
"model.diffusion_model.joint_blocks.12.context_block.mlp.fc1.weight": "blocks.12.ff_b.0.weight",
"model.diffusion_model.joint_blocks.12.context_block.mlp.fc2.bias": "blocks.12.ff_b.2.bias",
"model.diffusion_model.joint_blocks.12.context_block.mlp.fc2.weight": "blocks.12.ff_b.2.weight",
"model.diffusion_model.joint_blocks.12.x_block.adaLN_modulation.1.bias": "blocks.12.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.12.x_block.adaLN_modulation.1.weight": "blocks.12.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.12.x_block.attn.proj.bias": "blocks.12.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.12.x_block.attn.proj.weight": "blocks.12.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.12.x_block.attn.qkv.bias": ['blocks.12.attn.a_to_q.bias', 'blocks.12.attn.a_to_k.bias', 'blocks.12.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.12.x_block.attn.qkv.weight": ['blocks.12.attn.a_to_q.weight', 'blocks.12.attn.a_to_k.weight', 'blocks.12.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.12.x_block.mlp.fc1.bias": "blocks.12.ff_a.0.bias",
"model.diffusion_model.joint_blocks.12.x_block.mlp.fc1.weight": "blocks.12.ff_a.0.weight",
"model.diffusion_model.joint_blocks.12.x_block.mlp.fc2.bias": "blocks.12.ff_a.2.bias",
"model.diffusion_model.joint_blocks.12.x_block.mlp.fc2.weight": "blocks.12.ff_a.2.weight",
"model.diffusion_model.joint_blocks.13.context_block.adaLN_modulation.1.bias": "blocks.13.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.13.context_block.adaLN_modulation.1.weight": "blocks.13.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.13.context_block.attn.proj.bias": "blocks.13.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.13.context_block.attn.proj.weight": "blocks.13.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.13.context_block.attn.qkv.bias": ['blocks.13.attn.b_to_q.bias', 'blocks.13.attn.b_to_k.bias', 'blocks.13.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.13.context_block.attn.qkv.weight": ['blocks.13.attn.b_to_q.weight', 'blocks.13.attn.b_to_k.weight', 'blocks.13.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.13.context_block.mlp.fc1.bias": "blocks.13.ff_b.0.bias",
"model.diffusion_model.joint_blocks.13.context_block.mlp.fc1.weight": "blocks.13.ff_b.0.weight",
"model.diffusion_model.joint_blocks.13.context_block.mlp.fc2.bias": "blocks.13.ff_b.2.bias",
"model.diffusion_model.joint_blocks.13.context_block.mlp.fc2.weight": "blocks.13.ff_b.2.weight",
"model.diffusion_model.joint_blocks.13.x_block.adaLN_modulation.1.bias": "blocks.13.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.13.x_block.adaLN_modulation.1.weight": "blocks.13.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.13.x_block.attn.proj.bias": "blocks.13.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.13.x_block.attn.proj.weight": "blocks.13.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.13.x_block.attn.qkv.bias": ['blocks.13.attn.a_to_q.bias', 'blocks.13.attn.a_to_k.bias', 'blocks.13.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.13.x_block.attn.qkv.weight": ['blocks.13.attn.a_to_q.weight', 'blocks.13.attn.a_to_k.weight', 'blocks.13.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.13.x_block.mlp.fc1.bias": "blocks.13.ff_a.0.bias",
"model.diffusion_model.joint_blocks.13.x_block.mlp.fc1.weight": "blocks.13.ff_a.0.weight",
"model.diffusion_model.joint_blocks.13.x_block.mlp.fc2.bias": "blocks.13.ff_a.2.bias",
"model.diffusion_model.joint_blocks.13.x_block.mlp.fc2.weight": "blocks.13.ff_a.2.weight",
"model.diffusion_model.joint_blocks.14.context_block.adaLN_modulation.1.bias": "blocks.14.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.14.context_block.adaLN_modulation.1.weight": "blocks.14.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.14.context_block.attn.proj.bias": "blocks.14.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.14.context_block.attn.proj.weight": "blocks.14.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.14.context_block.attn.qkv.bias": ['blocks.14.attn.b_to_q.bias', 'blocks.14.attn.b_to_k.bias', 'blocks.14.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.14.context_block.attn.qkv.weight": ['blocks.14.attn.b_to_q.weight', 'blocks.14.attn.b_to_k.weight', 'blocks.14.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.14.context_block.mlp.fc1.bias": "blocks.14.ff_b.0.bias",
"model.diffusion_model.joint_blocks.14.context_block.mlp.fc1.weight": "blocks.14.ff_b.0.weight",
"model.diffusion_model.joint_blocks.14.context_block.mlp.fc2.bias": "blocks.14.ff_b.2.bias",
"model.diffusion_model.joint_blocks.14.context_block.mlp.fc2.weight": "blocks.14.ff_b.2.weight",
"model.diffusion_model.joint_blocks.14.x_block.adaLN_modulation.1.bias": "blocks.14.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.14.x_block.adaLN_modulation.1.weight": "blocks.14.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.14.x_block.attn.proj.bias": "blocks.14.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.14.x_block.attn.proj.weight": "blocks.14.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.14.x_block.attn.qkv.bias": ['blocks.14.attn.a_to_q.bias', 'blocks.14.attn.a_to_k.bias', 'blocks.14.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.14.x_block.attn.qkv.weight": ['blocks.14.attn.a_to_q.weight', 'blocks.14.attn.a_to_k.weight', 'blocks.14.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.14.x_block.mlp.fc1.bias": "blocks.14.ff_a.0.bias",
"model.diffusion_model.joint_blocks.14.x_block.mlp.fc1.weight": "blocks.14.ff_a.0.weight",
"model.diffusion_model.joint_blocks.14.x_block.mlp.fc2.bias": "blocks.14.ff_a.2.bias",
"model.diffusion_model.joint_blocks.14.x_block.mlp.fc2.weight": "blocks.14.ff_a.2.weight",
"model.diffusion_model.joint_blocks.15.context_block.adaLN_modulation.1.bias": "blocks.15.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.15.context_block.adaLN_modulation.1.weight": "blocks.15.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.15.context_block.attn.proj.bias": "blocks.15.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.15.context_block.attn.proj.weight": "blocks.15.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.15.context_block.attn.qkv.bias": ['blocks.15.attn.b_to_q.bias', 'blocks.15.attn.b_to_k.bias', 'blocks.15.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.15.context_block.attn.qkv.weight": ['blocks.15.attn.b_to_q.weight', 'blocks.15.attn.b_to_k.weight', 'blocks.15.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.15.context_block.mlp.fc1.bias": "blocks.15.ff_b.0.bias",
"model.diffusion_model.joint_blocks.15.context_block.mlp.fc1.weight": "blocks.15.ff_b.0.weight",
"model.diffusion_model.joint_blocks.15.context_block.mlp.fc2.bias": "blocks.15.ff_b.2.bias",
"model.diffusion_model.joint_blocks.15.context_block.mlp.fc2.weight": "blocks.15.ff_b.2.weight",
"model.diffusion_model.joint_blocks.15.x_block.adaLN_modulation.1.bias": "blocks.15.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.15.x_block.adaLN_modulation.1.weight": "blocks.15.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.15.x_block.attn.proj.bias": "blocks.15.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.15.x_block.attn.proj.weight": "blocks.15.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.15.x_block.attn.qkv.bias": ['blocks.15.attn.a_to_q.bias', 'blocks.15.attn.a_to_k.bias', 'blocks.15.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.15.x_block.attn.qkv.weight": ['blocks.15.attn.a_to_q.weight', 'blocks.15.attn.a_to_k.weight', 'blocks.15.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.15.x_block.mlp.fc1.bias": "blocks.15.ff_a.0.bias",
"model.diffusion_model.joint_blocks.15.x_block.mlp.fc1.weight": "blocks.15.ff_a.0.weight",
"model.diffusion_model.joint_blocks.15.x_block.mlp.fc2.bias": "blocks.15.ff_a.2.bias",
"model.diffusion_model.joint_blocks.15.x_block.mlp.fc2.weight": "blocks.15.ff_a.2.weight",
"model.diffusion_model.joint_blocks.16.context_block.adaLN_modulation.1.bias": "blocks.16.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.16.context_block.adaLN_modulation.1.weight": "blocks.16.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.16.context_block.attn.proj.bias": "blocks.16.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.16.context_block.attn.proj.weight": "blocks.16.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.16.context_block.attn.qkv.bias": ['blocks.16.attn.b_to_q.bias', 'blocks.16.attn.b_to_k.bias', 'blocks.16.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.16.context_block.attn.qkv.weight": ['blocks.16.attn.b_to_q.weight', 'blocks.16.attn.b_to_k.weight', 'blocks.16.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.16.context_block.mlp.fc1.bias": "blocks.16.ff_b.0.bias",
"model.diffusion_model.joint_blocks.16.context_block.mlp.fc1.weight": "blocks.16.ff_b.0.weight",
"model.diffusion_model.joint_blocks.16.context_block.mlp.fc2.bias": "blocks.16.ff_b.2.bias",
"model.diffusion_model.joint_blocks.16.context_block.mlp.fc2.weight": "blocks.16.ff_b.2.weight",
"model.diffusion_model.joint_blocks.16.x_block.adaLN_modulation.1.bias": "blocks.16.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.16.x_block.adaLN_modulation.1.weight": "blocks.16.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.16.x_block.attn.proj.bias": "blocks.16.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.16.x_block.attn.proj.weight": "blocks.16.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.16.x_block.attn.qkv.bias": ['blocks.16.attn.a_to_q.bias', 'blocks.16.attn.a_to_k.bias', 'blocks.16.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.16.x_block.attn.qkv.weight": ['blocks.16.attn.a_to_q.weight', 'blocks.16.attn.a_to_k.weight', 'blocks.16.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.16.x_block.mlp.fc1.bias": "blocks.16.ff_a.0.bias",
"model.diffusion_model.joint_blocks.16.x_block.mlp.fc1.weight": "blocks.16.ff_a.0.weight",
"model.diffusion_model.joint_blocks.16.x_block.mlp.fc2.bias": "blocks.16.ff_a.2.bias",
"model.diffusion_model.joint_blocks.16.x_block.mlp.fc2.weight": "blocks.16.ff_a.2.weight",
"model.diffusion_model.joint_blocks.17.context_block.adaLN_modulation.1.bias": "blocks.17.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.17.context_block.adaLN_modulation.1.weight": "blocks.17.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.17.context_block.attn.proj.bias": "blocks.17.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.17.context_block.attn.proj.weight": "blocks.17.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.17.context_block.attn.qkv.bias": ['blocks.17.attn.b_to_q.bias', 'blocks.17.attn.b_to_k.bias', 'blocks.17.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.17.context_block.attn.qkv.weight": ['blocks.17.attn.b_to_q.weight', 'blocks.17.attn.b_to_k.weight', 'blocks.17.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.17.context_block.mlp.fc1.bias": "blocks.17.ff_b.0.bias",
"model.diffusion_model.joint_blocks.17.context_block.mlp.fc1.weight": "blocks.17.ff_b.0.weight",
"model.diffusion_model.joint_blocks.17.context_block.mlp.fc2.bias": "blocks.17.ff_b.2.bias",
"model.diffusion_model.joint_blocks.17.context_block.mlp.fc2.weight": "blocks.17.ff_b.2.weight",
"model.diffusion_model.joint_blocks.17.x_block.adaLN_modulation.1.bias": "blocks.17.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.17.x_block.adaLN_modulation.1.weight": "blocks.17.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.17.x_block.attn.proj.bias": "blocks.17.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.17.x_block.attn.proj.weight": "blocks.17.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.17.x_block.attn.qkv.bias": ['blocks.17.attn.a_to_q.bias', 'blocks.17.attn.a_to_k.bias', 'blocks.17.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.17.x_block.attn.qkv.weight": ['blocks.17.attn.a_to_q.weight', 'blocks.17.attn.a_to_k.weight', 'blocks.17.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.17.x_block.mlp.fc1.bias": "blocks.17.ff_a.0.bias",
"model.diffusion_model.joint_blocks.17.x_block.mlp.fc1.weight": "blocks.17.ff_a.0.weight",
"model.diffusion_model.joint_blocks.17.x_block.mlp.fc2.bias": "blocks.17.ff_a.2.bias",
"model.diffusion_model.joint_blocks.17.x_block.mlp.fc2.weight": "blocks.17.ff_a.2.weight",
"model.diffusion_model.joint_blocks.18.context_block.adaLN_modulation.1.bias": "blocks.18.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.18.context_block.adaLN_modulation.1.weight": "blocks.18.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.18.context_block.attn.proj.bias": "blocks.18.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.18.context_block.attn.proj.weight": "blocks.18.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.18.context_block.attn.qkv.bias": ['blocks.18.attn.b_to_q.bias', 'blocks.18.attn.b_to_k.bias', 'blocks.18.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.18.context_block.attn.qkv.weight": ['blocks.18.attn.b_to_q.weight', 'blocks.18.attn.b_to_k.weight', 'blocks.18.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.18.context_block.mlp.fc1.bias": "blocks.18.ff_b.0.bias",
"model.diffusion_model.joint_blocks.18.context_block.mlp.fc1.weight": "blocks.18.ff_b.0.weight",
"model.diffusion_model.joint_blocks.18.context_block.mlp.fc2.bias": "blocks.18.ff_b.2.bias",
"model.diffusion_model.joint_blocks.18.context_block.mlp.fc2.weight": "blocks.18.ff_b.2.weight",
"model.diffusion_model.joint_blocks.18.x_block.adaLN_modulation.1.bias": "blocks.18.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.18.x_block.adaLN_modulation.1.weight": "blocks.18.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.18.x_block.attn.proj.bias": "blocks.18.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.18.x_block.attn.proj.weight": "blocks.18.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.18.x_block.attn.qkv.bias": ['blocks.18.attn.a_to_q.bias', 'blocks.18.attn.a_to_k.bias', 'blocks.18.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.18.x_block.attn.qkv.weight": ['blocks.18.attn.a_to_q.weight', 'blocks.18.attn.a_to_k.weight', 'blocks.18.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.18.x_block.mlp.fc1.bias": "blocks.18.ff_a.0.bias",
"model.diffusion_model.joint_blocks.18.x_block.mlp.fc1.weight": "blocks.18.ff_a.0.weight",
"model.diffusion_model.joint_blocks.18.x_block.mlp.fc2.bias": "blocks.18.ff_a.2.bias",
"model.diffusion_model.joint_blocks.18.x_block.mlp.fc2.weight": "blocks.18.ff_a.2.weight",
"model.diffusion_model.joint_blocks.19.context_block.adaLN_modulation.1.bias": "blocks.19.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.19.context_block.adaLN_modulation.1.weight": "blocks.19.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.19.context_block.attn.proj.bias": "blocks.19.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.19.context_block.attn.proj.weight": "blocks.19.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.19.context_block.attn.qkv.bias": ['blocks.19.attn.b_to_q.bias', 'blocks.19.attn.b_to_k.bias', 'blocks.19.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.19.context_block.attn.qkv.weight": ['blocks.19.attn.b_to_q.weight', 'blocks.19.attn.b_to_k.weight', 'blocks.19.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.19.context_block.mlp.fc1.bias": "blocks.19.ff_b.0.bias",
"model.diffusion_model.joint_blocks.19.context_block.mlp.fc1.weight": "blocks.19.ff_b.0.weight",
"model.diffusion_model.joint_blocks.19.context_block.mlp.fc2.bias": "blocks.19.ff_b.2.bias",
"model.diffusion_model.joint_blocks.19.context_block.mlp.fc2.weight": "blocks.19.ff_b.2.weight",
"model.diffusion_model.joint_blocks.19.x_block.adaLN_modulation.1.bias": "blocks.19.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.19.x_block.adaLN_modulation.1.weight": "blocks.19.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.19.x_block.attn.proj.bias": "blocks.19.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.19.x_block.attn.proj.weight": "blocks.19.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.19.x_block.attn.qkv.bias": ['blocks.19.attn.a_to_q.bias', 'blocks.19.attn.a_to_k.bias', 'blocks.19.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.19.x_block.attn.qkv.weight": ['blocks.19.attn.a_to_q.weight', 'blocks.19.attn.a_to_k.weight', 'blocks.19.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.19.x_block.mlp.fc1.bias": "blocks.19.ff_a.0.bias",
"model.diffusion_model.joint_blocks.19.x_block.mlp.fc1.weight": "blocks.19.ff_a.0.weight",
"model.diffusion_model.joint_blocks.19.x_block.mlp.fc2.bias": "blocks.19.ff_a.2.bias",
"model.diffusion_model.joint_blocks.19.x_block.mlp.fc2.weight": "blocks.19.ff_a.2.weight",
"model.diffusion_model.joint_blocks.2.context_block.adaLN_modulation.1.bias": "blocks.2.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.2.context_block.adaLN_modulation.1.weight": "blocks.2.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.2.context_block.attn.proj.bias": "blocks.2.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.2.context_block.attn.proj.weight": "blocks.2.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.2.context_block.attn.qkv.bias": ['blocks.2.attn.b_to_q.bias', 'blocks.2.attn.b_to_k.bias', 'blocks.2.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.2.context_block.attn.qkv.weight": ['blocks.2.attn.b_to_q.weight', 'blocks.2.attn.b_to_k.weight', 'blocks.2.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.2.context_block.mlp.fc1.bias": "blocks.2.ff_b.0.bias",
"model.diffusion_model.joint_blocks.2.context_block.mlp.fc1.weight": "blocks.2.ff_b.0.weight",
"model.diffusion_model.joint_blocks.2.context_block.mlp.fc2.bias": "blocks.2.ff_b.2.bias",
"model.diffusion_model.joint_blocks.2.context_block.mlp.fc2.weight": "blocks.2.ff_b.2.weight",
"model.diffusion_model.joint_blocks.2.x_block.adaLN_modulation.1.bias": "blocks.2.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.2.x_block.adaLN_modulation.1.weight": "blocks.2.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.2.x_block.attn.proj.bias": "blocks.2.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.2.x_block.attn.proj.weight": "blocks.2.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.2.x_block.attn.qkv.bias": ['blocks.2.attn.a_to_q.bias', 'blocks.2.attn.a_to_k.bias', 'blocks.2.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.2.x_block.attn.qkv.weight": ['blocks.2.attn.a_to_q.weight', 'blocks.2.attn.a_to_k.weight', 'blocks.2.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.2.x_block.mlp.fc1.bias": "blocks.2.ff_a.0.bias",
"model.diffusion_model.joint_blocks.2.x_block.mlp.fc1.weight": "blocks.2.ff_a.0.weight",
"model.diffusion_model.joint_blocks.2.x_block.mlp.fc2.bias": "blocks.2.ff_a.2.bias",
"model.diffusion_model.joint_blocks.2.x_block.mlp.fc2.weight": "blocks.2.ff_a.2.weight",
"model.diffusion_model.joint_blocks.20.context_block.adaLN_modulation.1.bias": "blocks.20.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.20.context_block.adaLN_modulation.1.weight": "blocks.20.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.20.context_block.attn.proj.bias": "blocks.20.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.20.context_block.attn.proj.weight": "blocks.20.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.20.context_block.attn.qkv.bias": ['blocks.20.attn.b_to_q.bias', 'blocks.20.attn.b_to_k.bias', 'blocks.20.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.20.context_block.attn.qkv.weight": ['blocks.20.attn.b_to_q.weight', 'blocks.20.attn.b_to_k.weight', 'blocks.20.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.20.context_block.mlp.fc1.bias": "blocks.20.ff_b.0.bias",
"model.diffusion_model.joint_blocks.20.context_block.mlp.fc1.weight": "blocks.20.ff_b.0.weight",
"model.diffusion_model.joint_blocks.20.context_block.mlp.fc2.bias": "blocks.20.ff_b.2.bias",
"model.diffusion_model.joint_blocks.20.context_block.mlp.fc2.weight": "blocks.20.ff_b.2.weight",
"model.diffusion_model.joint_blocks.20.x_block.adaLN_modulation.1.bias": "blocks.20.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.20.x_block.adaLN_modulation.1.weight": "blocks.20.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.20.x_block.attn.proj.bias": "blocks.20.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.20.x_block.attn.proj.weight": "blocks.20.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.20.x_block.attn.qkv.bias": ['blocks.20.attn.a_to_q.bias', 'blocks.20.attn.a_to_k.bias', 'blocks.20.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.20.x_block.attn.qkv.weight": ['blocks.20.attn.a_to_q.weight', 'blocks.20.attn.a_to_k.weight', 'blocks.20.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.20.x_block.mlp.fc1.bias": "blocks.20.ff_a.0.bias",
"model.diffusion_model.joint_blocks.20.x_block.mlp.fc1.weight": "blocks.20.ff_a.0.weight",
"model.diffusion_model.joint_blocks.20.x_block.mlp.fc2.bias": "blocks.20.ff_a.2.bias",
"model.diffusion_model.joint_blocks.20.x_block.mlp.fc2.weight": "blocks.20.ff_a.2.weight",
"model.diffusion_model.joint_blocks.21.context_block.adaLN_modulation.1.bias": "blocks.21.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.21.context_block.adaLN_modulation.1.weight": "blocks.21.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.21.context_block.attn.proj.bias": "blocks.21.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.21.context_block.attn.proj.weight": "blocks.21.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.21.context_block.attn.qkv.bias": ['blocks.21.attn.b_to_q.bias', 'blocks.21.attn.b_to_k.bias', 'blocks.21.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.21.context_block.attn.qkv.weight": ['blocks.21.attn.b_to_q.weight', 'blocks.21.attn.b_to_k.weight', 'blocks.21.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.21.context_block.mlp.fc1.bias": "blocks.21.ff_b.0.bias",
"model.diffusion_model.joint_blocks.21.context_block.mlp.fc1.weight": "blocks.21.ff_b.0.weight",
"model.diffusion_model.joint_blocks.21.context_block.mlp.fc2.bias": "blocks.21.ff_b.2.bias",
"model.diffusion_model.joint_blocks.21.context_block.mlp.fc2.weight": "blocks.21.ff_b.2.weight",
"model.diffusion_model.joint_blocks.21.x_block.adaLN_modulation.1.bias": "blocks.21.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.21.x_block.adaLN_modulation.1.weight": "blocks.21.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.21.x_block.attn.proj.bias": "blocks.21.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.21.x_block.attn.proj.weight": "blocks.21.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.21.x_block.attn.qkv.bias": ['blocks.21.attn.a_to_q.bias', 'blocks.21.attn.a_to_k.bias', 'blocks.21.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.21.x_block.attn.qkv.weight": ['blocks.21.attn.a_to_q.weight', 'blocks.21.attn.a_to_k.weight', 'blocks.21.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.21.x_block.mlp.fc1.bias": "blocks.21.ff_a.0.bias",
"model.diffusion_model.joint_blocks.21.x_block.mlp.fc1.weight": "blocks.21.ff_a.0.weight",
"model.diffusion_model.joint_blocks.21.x_block.mlp.fc2.bias": "blocks.21.ff_a.2.bias",
"model.diffusion_model.joint_blocks.21.x_block.mlp.fc2.weight": "blocks.21.ff_a.2.weight",
"model.diffusion_model.joint_blocks.22.context_block.adaLN_modulation.1.bias": "blocks.22.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.22.context_block.adaLN_modulation.1.weight": "blocks.22.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.22.context_block.attn.proj.bias": "blocks.22.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.22.context_block.attn.proj.weight": "blocks.22.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.22.context_block.attn.qkv.bias": ['blocks.22.attn.b_to_q.bias', 'blocks.22.attn.b_to_k.bias', 'blocks.22.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.22.context_block.attn.qkv.weight": ['blocks.22.attn.b_to_q.weight', 'blocks.22.attn.b_to_k.weight', 'blocks.22.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.22.context_block.mlp.fc1.bias": "blocks.22.ff_b.0.bias",
"model.diffusion_model.joint_blocks.22.context_block.mlp.fc1.weight": "blocks.22.ff_b.0.weight",
"model.diffusion_model.joint_blocks.22.context_block.mlp.fc2.bias": "blocks.22.ff_b.2.bias",
"model.diffusion_model.joint_blocks.22.context_block.mlp.fc2.weight": "blocks.22.ff_b.2.weight",
"model.diffusion_model.joint_blocks.22.x_block.adaLN_modulation.1.bias": "blocks.22.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.22.x_block.adaLN_modulation.1.weight": "blocks.22.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.22.x_block.attn.proj.bias": "blocks.22.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.22.x_block.attn.proj.weight": "blocks.22.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.22.x_block.attn.qkv.bias": ['blocks.22.attn.a_to_q.bias', 'blocks.22.attn.a_to_k.bias', 'blocks.22.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.22.x_block.attn.qkv.weight": ['blocks.22.attn.a_to_q.weight', 'blocks.22.attn.a_to_k.weight', 'blocks.22.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.22.x_block.mlp.fc1.bias": "blocks.22.ff_a.0.bias",
"model.diffusion_model.joint_blocks.22.x_block.mlp.fc1.weight": "blocks.22.ff_a.0.weight",
"model.diffusion_model.joint_blocks.22.x_block.mlp.fc2.bias": "blocks.22.ff_a.2.bias",
"model.diffusion_model.joint_blocks.22.x_block.mlp.fc2.weight": "blocks.22.ff_a.2.weight",
"model.diffusion_model.joint_blocks.23.context_block.attn.qkv.bias": ['blocks.23.attn.b_to_q.bias', 'blocks.23.attn.b_to_k.bias', 'blocks.23.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.23.context_block.attn.qkv.weight": ['blocks.23.attn.b_to_q.weight', 'blocks.23.attn.b_to_k.weight', 'blocks.23.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.23.x_block.adaLN_modulation.1.bias": "blocks.23.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.23.x_block.adaLN_modulation.1.weight": "blocks.23.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.23.x_block.attn.proj.bias": "blocks.23.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.23.x_block.attn.proj.weight": "blocks.23.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.23.x_block.attn.qkv.bias": ['blocks.23.attn.a_to_q.bias', 'blocks.23.attn.a_to_k.bias', 'blocks.23.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.23.x_block.attn.qkv.weight": ['blocks.23.attn.a_to_q.weight', 'blocks.23.attn.a_to_k.weight', 'blocks.23.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.23.x_block.mlp.fc1.bias": "blocks.23.ff_a.0.bias",
"model.diffusion_model.joint_blocks.23.x_block.mlp.fc1.weight": "blocks.23.ff_a.0.weight",
"model.diffusion_model.joint_blocks.23.x_block.mlp.fc2.bias": "blocks.23.ff_a.2.bias",
"model.diffusion_model.joint_blocks.23.x_block.mlp.fc2.weight": "blocks.23.ff_a.2.weight",
"model.diffusion_model.joint_blocks.3.context_block.adaLN_modulation.1.bias": "blocks.3.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.3.context_block.adaLN_modulation.1.weight": "blocks.3.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.3.context_block.attn.proj.bias": "blocks.3.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.3.context_block.attn.proj.weight": "blocks.3.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.3.context_block.attn.qkv.bias": ['blocks.3.attn.b_to_q.bias', 'blocks.3.attn.b_to_k.bias', 'blocks.3.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.3.context_block.attn.qkv.weight": ['blocks.3.attn.b_to_q.weight', 'blocks.3.attn.b_to_k.weight', 'blocks.3.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.3.context_block.mlp.fc1.bias": "blocks.3.ff_b.0.bias",
"model.diffusion_model.joint_blocks.3.context_block.mlp.fc1.weight": "blocks.3.ff_b.0.weight",
"model.diffusion_model.joint_blocks.3.context_block.mlp.fc2.bias": "blocks.3.ff_b.2.bias",
"model.diffusion_model.joint_blocks.3.context_block.mlp.fc2.weight": "blocks.3.ff_b.2.weight",
"model.diffusion_model.joint_blocks.3.x_block.adaLN_modulation.1.bias": "blocks.3.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.3.x_block.adaLN_modulation.1.weight": "blocks.3.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.3.x_block.attn.proj.bias": "blocks.3.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.3.x_block.attn.proj.weight": "blocks.3.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.3.x_block.attn.qkv.bias": ['blocks.3.attn.a_to_q.bias', 'blocks.3.attn.a_to_k.bias', 'blocks.3.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.3.x_block.attn.qkv.weight": ['blocks.3.attn.a_to_q.weight', 'blocks.3.attn.a_to_k.weight', 'blocks.3.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.3.x_block.mlp.fc1.bias": "blocks.3.ff_a.0.bias",
"model.diffusion_model.joint_blocks.3.x_block.mlp.fc1.weight": "blocks.3.ff_a.0.weight",
"model.diffusion_model.joint_blocks.3.x_block.mlp.fc2.bias": "blocks.3.ff_a.2.bias",
"model.diffusion_model.joint_blocks.3.x_block.mlp.fc2.weight": "blocks.3.ff_a.2.weight",
"model.diffusion_model.joint_blocks.4.context_block.adaLN_modulation.1.bias": "blocks.4.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.4.context_block.adaLN_modulation.1.weight": "blocks.4.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.4.context_block.attn.proj.bias": "blocks.4.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.4.context_block.attn.proj.weight": "blocks.4.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.4.context_block.attn.qkv.bias": ['blocks.4.attn.b_to_q.bias', 'blocks.4.attn.b_to_k.bias', 'blocks.4.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.4.context_block.attn.qkv.weight": ['blocks.4.attn.b_to_q.weight', 'blocks.4.attn.b_to_k.weight', 'blocks.4.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.4.context_block.mlp.fc1.bias": "blocks.4.ff_b.0.bias",
"model.diffusion_model.joint_blocks.4.context_block.mlp.fc1.weight": "blocks.4.ff_b.0.weight",
"model.diffusion_model.joint_blocks.4.context_block.mlp.fc2.bias": "blocks.4.ff_b.2.bias",
"model.diffusion_model.joint_blocks.4.context_block.mlp.fc2.weight": "blocks.4.ff_b.2.weight",
"model.diffusion_model.joint_blocks.4.x_block.adaLN_modulation.1.bias": "blocks.4.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.4.x_block.adaLN_modulation.1.weight": "blocks.4.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.4.x_block.attn.proj.bias": "blocks.4.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.4.x_block.attn.proj.weight": "blocks.4.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.4.x_block.attn.qkv.bias": ['blocks.4.attn.a_to_q.bias', 'blocks.4.attn.a_to_k.bias', 'blocks.4.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.4.x_block.attn.qkv.weight": ['blocks.4.attn.a_to_q.weight', 'blocks.4.attn.a_to_k.weight', 'blocks.4.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.4.x_block.mlp.fc1.bias": "blocks.4.ff_a.0.bias",
"model.diffusion_model.joint_blocks.4.x_block.mlp.fc1.weight": "blocks.4.ff_a.0.weight",
"model.diffusion_model.joint_blocks.4.x_block.mlp.fc2.bias": "blocks.4.ff_a.2.bias",
"model.diffusion_model.joint_blocks.4.x_block.mlp.fc2.weight": "blocks.4.ff_a.2.weight",
"model.diffusion_model.joint_blocks.5.context_block.adaLN_modulation.1.bias": "blocks.5.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.5.context_block.adaLN_modulation.1.weight": "blocks.5.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.5.context_block.attn.proj.bias": "blocks.5.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.5.context_block.attn.proj.weight": "blocks.5.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.5.context_block.attn.qkv.bias": ['blocks.5.attn.b_to_q.bias', 'blocks.5.attn.b_to_k.bias', 'blocks.5.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.5.context_block.attn.qkv.weight": ['blocks.5.attn.b_to_q.weight', 'blocks.5.attn.b_to_k.weight', 'blocks.5.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.5.context_block.mlp.fc1.bias": "blocks.5.ff_b.0.bias",
"model.diffusion_model.joint_blocks.5.context_block.mlp.fc1.weight": "blocks.5.ff_b.0.weight",
"model.diffusion_model.joint_blocks.5.context_block.mlp.fc2.bias": "blocks.5.ff_b.2.bias",
"model.diffusion_model.joint_blocks.5.context_block.mlp.fc2.weight": "blocks.5.ff_b.2.weight",
"model.diffusion_model.joint_blocks.5.x_block.adaLN_modulation.1.bias": "blocks.5.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.5.x_block.adaLN_modulation.1.weight": "blocks.5.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.5.x_block.attn.proj.bias": "blocks.5.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.5.x_block.attn.proj.weight": "blocks.5.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.5.x_block.attn.qkv.bias": ['blocks.5.attn.a_to_q.bias', 'blocks.5.attn.a_to_k.bias', 'blocks.5.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.5.x_block.attn.qkv.weight": ['blocks.5.attn.a_to_q.weight', 'blocks.5.attn.a_to_k.weight', 'blocks.5.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.5.x_block.mlp.fc1.bias": "blocks.5.ff_a.0.bias",
"model.diffusion_model.joint_blocks.5.x_block.mlp.fc1.weight": "blocks.5.ff_a.0.weight",
"model.diffusion_model.joint_blocks.5.x_block.mlp.fc2.bias": "blocks.5.ff_a.2.bias",
"model.diffusion_model.joint_blocks.5.x_block.mlp.fc2.weight": "blocks.5.ff_a.2.weight",
"model.diffusion_model.joint_blocks.6.context_block.adaLN_modulation.1.bias": "blocks.6.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.6.context_block.adaLN_modulation.1.weight": "blocks.6.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.6.context_block.attn.proj.bias": "blocks.6.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.6.context_block.attn.proj.weight": "blocks.6.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.6.context_block.attn.qkv.bias": ['blocks.6.attn.b_to_q.bias', 'blocks.6.attn.b_to_k.bias', 'blocks.6.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.6.context_block.attn.qkv.weight": ['blocks.6.attn.b_to_q.weight', 'blocks.6.attn.b_to_k.weight', 'blocks.6.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.6.context_block.mlp.fc1.bias": "blocks.6.ff_b.0.bias",
"model.diffusion_model.joint_blocks.6.context_block.mlp.fc1.weight": "blocks.6.ff_b.0.weight",
"model.diffusion_model.joint_blocks.6.context_block.mlp.fc2.bias": "blocks.6.ff_b.2.bias",
"model.diffusion_model.joint_blocks.6.context_block.mlp.fc2.weight": "blocks.6.ff_b.2.weight",
"model.diffusion_model.joint_blocks.6.x_block.adaLN_modulation.1.bias": "blocks.6.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.6.x_block.adaLN_modulation.1.weight": "blocks.6.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.6.x_block.attn.proj.bias": "blocks.6.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.6.x_block.attn.proj.weight": "blocks.6.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.6.x_block.attn.qkv.bias": ['blocks.6.attn.a_to_q.bias', 'blocks.6.attn.a_to_k.bias', 'blocks.6.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.6.x_block.attn.qkv.weight": ['blocks.6.attn.a_to_q.weight', 'blocks.6.attn.a_to_k.weight', 'blocks.6.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.6.x_block.mlp.fc1.bias": "blocks.6.ff_a.0.bias",
"model.diffusion_model.joint_blocks.6.x_block.mlp.fc1.weight": "blocks.6.ff_a.0.weight",
"model.diffusion_model.joint_blocks.6.x_block.mlp.fc2.bias": "blocks.6.ff_a.2.bias",
"model.diffusion_model.joint_blocks.6.x_block.mlp.fc2.weight": "blocks.6.ff_a.2.weight",
"model.diffusion_model.joint_blocks.7.context_block.adaLN_modulation.1.bias": "blocks.7.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.7.context_block.adaLN_modulation.1.weight": "blocks.7.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.7.context_block.attn.proj.bias": "blocks.7.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.7.context_block.attn.proj.weight": "blocks.7.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.7.context_block.attn.qkv.bias": ['blocks.7.attn.b_to_q.bias', 'blocks.7.attn.b_to_k.bias', 'blocks.7.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.7.context_block.attn.qkv.weight": ['blocks.7.attn.b_to_q.weight', 'blocks.7.attn.b_to_k.weight', 'blocks.7.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.7.context_block.mlp.fc1.bias": "blocks.7.ff_b.0.bias",
"model.diffusion_model.joint_blocks.7.context_block.mlp.fc1.weight": "blocks.7.ff_b.0.weight",
"model.diffusion_model.joint_blocks.7.context_block.mlp.fc2.bias": "blocks.7.ff_b.2.bias",
"model.diffusion_model.joint_blocks.7.context_block.mlp.fc2.weight": "blocks.7.ff_b.2.weight",
"model.diffusion_model.joint_blocks.7.x_block.adaLN_modulation.1.bias": "blocks.7.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.7.x_block.adaLN_modulation.1.weight": "blocks.7.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.7.x_block.attn.proj.bias": "blocks.7.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.7.x_block.attn.proj.weight": "blocks.7.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.7.x_block.attn.qkv.bias": ['blocks.7.attn.a_to_q.bias', 'blocks.7.attn.a_to_k.bias', 'blocks.7.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.7.x_block.attn.qkv.weight": ['blocks.7.attn.a_to_q.weight', 'blocks.7.attn.a_to_k.weight', 'blocks.7.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.7.x_block.mlp.fc1.bias": "blocks.7.ff_a.0.bias",
"model.diffusion_model.joint_blocks.7.x_block.mlp.fc1.weight": "blocks.7.ff_a.0.weight",
"model.diffusion_model.joint_blocks.7.x_block.mlp.fc2.bias": "blocks.7.ff_a.2.bias",
"model.diffusion_model.joint_blocks.7.x_block.mlp.fc2.weight": "blocks.7.ff_a.2.weight",
"model.diffusion_model.joint_blocks.8.context_block.adaLN_modulation.1.bias": "blocks.8.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.8.context_block.adaLN_modulation.1.weight": "blocks.8.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.8.context_block.attn.proj.bias": "blocks.8.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.8.context_block.attn.proj.weight": "blocks.8.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.8.context_block.attn.qkv.bias": ['blocks.8.attn.b_to_q.bias', 'blocks.8.attn.b_to_k.bias', 'blocks.8.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.8.context_block.attn.qkv.weight": ['blocks.8.attn.b_to_q.weight', 'blocks.8.attn.b_to_k.weight', 'blocks.8.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.8.context_block.mlp.fc1.bias": "blocks.8.ff_b.0.bias",
"model.diffusion_model.joint_blocks.8.context_block.mlp.fc1.weight": "blocks.8.ff_b.0.weight",
"model.diffusion_model.joint_blocks.8.context_block.mlp.fc2.bias": "blocks.8.ff_b.2.bias",
"model.diffusion_model.joint_blocks.8.context_block.mlp.fc2.weight": "blocks.8.ff_b.2.weight",
"model.diffusion_model.joint_blocks.8.x_block.adaLN_modulation.1.bias": "blocks.8.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.8.x_block.adaLN_modulation.1.weight": "blocks.8.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.8.x_block.attn.proj.bias": "blocks.8.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.8.x_block.attn.proj.weight": "blocks.8.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.8.x_block.attn.qkv.bias": ['blocks.8.attn.a_to_q.bias', 'blocks.8.attn.a_to_k.bias', 'blocks.8.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.8.x_block.attn.qkv.weight": ['blocks.8.attn.a_to_q.weight', 'blocks.8.attn.a_to_k.weight', 'blocks.8.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.8.x_block.mlp.fc1.bias": "blocks.8.ff_a.0.bias",
"model.diffusion_model.joint_blocks.8.x_block.mlp.fc1.weight": "blocks.8.ff_a.0.weight",
"model.diffusion_model.joint_blocks.8.x_block.mlp.fc2.bias": "blocks.8.ff_a.2.bias",
"model.diffusion_model.joint_blocks.8.x_block.mlp.fc2.weight": "blocks.8.ff_a.2.weight",
"model.diffusion_model.joint_blocks.9.context_block.adaLN_modulation.1.bias": "blocks.9.norm1_b.linear.bias",
"model.diffusion_model.joint_blocks.9.context_block.adaLN_modulation.1.weight": "blocks.9.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.9.context_block.attn.proj.bias": "blocks.9.attn.b_to_out.bias",
"model.diffusion_model.joint_blocks.9.context_block.attn.proj.weight": "blocks.9.attn.b_to_out.weight",
"model.diffusion_model.joint_blocks.9.context_block.attn.qkv.bias": ['blocks.9.attn.b_to_q.bias', 'blocks.9.attn.b_to_k.bias', 'blocks.9.attn.b_to_v.bias'],
"model.diffusion_model.joint_blocks.9.context_block.attn.qkv.weight": ['blocks.9.attn.b_to_q.weight', 'blocks.9.attn.b_to_k.weight', 'blocks.9.attn.b_to_v.weight'],
"model.diffusion_model.joint_blocks.9.context_block.mlp.fc1.bias": "blocks.9.ff_b.0.bias",
"model.diffusion_model.joint_blocks.9.context_block.mlp.fc1.weight": "blocks.9.ff_b.0.weight",
"model.diffusion_model.joint_blocks.9.context_block.mlp.fc2.bias": "blocks.9.ff_b.2.bias",
"model.diffusion_model.joint_blocks.9.context_block.mlp.fc2.weight": "blocks.9.ff_b.2.weight",
"model.diffusion_model.joint_blocks.9.x_block.adaLN_modulation.1.bias": "blocks.9.norm1_a.linear.bias",
"model.diffusion_model.joint_blocks.9.x_block.adaLN_modulation.1.weight": "blocks.9.norm1_a.linear.weight",
"model.diffusion_model.joint_blocks.9.x_block.attn.proj.bias": "blocks.9.attn.a_to_out.bias",
"model.diffusion_model.joint_blocks.9.x_block.attn.proj.weight": "blocks.9.attn.a_to_out.weight",
"model.diffusion_model.joint_blocks.9.x_block.attn.qkv.bias": ['blocks.9.attn.a_to_q.bias', 'blocks.9.attn.a_to_k.bias', 'blocks.9.attn.a_to_v.bias'],
"model.diffusion_model.joint_blocks.9.x_block.attn.qkv.weight": ['blocks.9.attn.a_to_q.weight', 'blocks.9.attn.a_to_k.weight', 'blocks.9.attn.a_to_v.weight'],
"model.diffusion_model.joint_blocks.9.x_block.mlp.fc1.bias": "blocks.9.ff_a.0.bias",
"model.diffusion_model.joint_blocks.9.x_block.mlp.fc1.weight": "blocks.9.ff_a.0.weight",
"model.diffusion_model.joint_blocks.9.x_block.mlp.fc2.bias": "blocks.9.ff_a.2.bias",
"model.diffusion_model.joint_blocks.9.x_block.mlp.fc2.weight": "blocks.9.ff_a.2.weight",
"model.diffusion_model.pos_embed": "pos_embedder.pos_embed",
"model.diffusion_model.t_embedder.mlp.0.bias": "time_embedder.timestep_embedder.0.bias",
"model.diffusion_model.t_embedder.mlp.0.weight": "time_embedder.timestep_embedder.0.weight",
"model.diffusion_model.t_embedder.mlp.2.bias": "time_embedder.timestep_embedder.2.bias",
"model.diffusion_model.t_embedder.mlp.2.weight": "time_embedder.timestep_embedder.2.weight",
"model.diffusion_model.x_embedder.proj.bias": "pos_embedder.proj.bias",
"model.diffusion_model.x_embedder.proj.weight": "pos_embedder.proj.weight",
"model.diffusion_model.y_embedder.mlp.0.bias": "pooled_text_embedder.0.bias",
"model.diffusion_model.y_embedder.mlp.0.weight": "pooled_text_embedder.0.weight",
"model.diffusion_model.y_embedder.mlp.2.bias": "pooled_text_embedder.2.bias",
"model.diffusion_model.y_embedder.mlp.2.weight": "pooled_text_embedder.2.weight",
"model.diffusion_model.joint_blocks.23.context_block.adaLN_modulation.1.weight": "blocks.23.norm1_b.linear.weight",
"model.diffusion_model.joint_blocks.23.context_block.adaLN_modulation.1.bias": "blocks.23.norm1_b.linear.bias",
"model.diffusion_model.final_layer.adaLN_modulation.1.weight": "norm_out.linear.weight",
"model.diffusion_model.final_layer.adaLN_modulation.1.bias": "norm_out.linear.bias",
}
state_dict_ = {}
for name in state_dict:
if name in rename_dict:
param = state_dict[name]
if name.startswith("model.diffusion_model.joint_blocks.23.context_block.adaLN_modulation.1."):
param = torch.concat([param[1536:], param[:1536]], axis=0)
elif name.startswith("model.diffusion_model.final_layer.adaLN_modulation.1."):
param = torch.concat([param[1536:], param[:1536]], axis=0)
elif name == "model.diffusion_model.pos_embed":
param = param.reshape((1, 192, 192, 1536))
if isinstance(rename_dict[name], str):
state_dict_[rename_dict[name]] = param
else:
name_ = rename_dict[name][0].replace(".a_to_q.", ".a_to_qkv.").replace(".b_to_q.", ".b_to_qkv.")
state_dict_[name_] = param
return state_dict_